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Motivation

« Motivation From Pre-trained LMs

- 2Lt of2iet &2 dilettantes 24|
« they do not have a true understanding of the world
* they are prone to hallucinating
» they are incapable of justifying their utterances by referring to supporting documents in
the corpus they were trained over
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Motivation

« Motivation From Pre-trained LMs
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Introduction
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Introduction

 Previous Research
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Introduction

e Critical Look
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Figure 1: The hybrid retrieval approach.
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« Proposal
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Model-Based Information Retrieval

« Envisioned Model

query —

Retrieve

Rank

Results

query —— Model

(a) Retrieve-then-rank

(b) Unified retrieve-and-rank

- is meant to replace the long-lived
‘retrieve-then-rank” paradigm by collapsing the
indexing, retrieval, and ranking components of
traditional IR systems into a single consolidated
model

- consolidated model replaces the indexing, retrieval,
and ranking components. In essence, it is referred
to as model-based because there is nothing but a
model
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Model-Based Information Retrieval

« Beyond Language Models
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Properties of Envisioned Model




Multi-Task Learning

« Envisioned Model by Multi-task Learning

query: home remodeling docs: DOC246 DOC111

question: when was answer: Lincoln was
Abraham Lincoln born? born in 1809.

Model

related documents: docs: DOC234 DOC321

DOC123

summary: Lorem ipsum
summarize: DOC369 dolor sit amet.

Figure 2: Example of how a single consolidated model can be leveraged to solve a wide range
of IR tasks. This example shows a model that handles document retrieval, question answering,
related document retrieval, and document summarization tasks.




Zero- and Few-shot Learning

« Envisioned Model by Multi-task Learning

Ad Hoc Retrieval (zero-shot) Query Understanding (few-shot)
e Input: query e Input: (query;,intenty), ..., (query,,intent,) query
e Output: reldocy,...,reldoc, e Output: intent
Pseudo-relevance feedback (few-shot) Document Understanding (few-shot)
e Input: (queryy,docy), ..., (query,, doc,) query e Input: (docy,labely), ..., (doc,, label,) doc
e Output: reldoc,,...,reldoc, e Output: label

- having a consolidated multi-task model that understands the connections between
sequences of terms and document identifiers opens up a wide range of straightforward
and powerful use cases.
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Envisioned Domain Expert

« Comparison on Search Engine

21results Sort by: Relevance Expand All
1 Health benefits of wine: don’t expect resveratrol too much. v
L Xiang, L Xiao, Y Wang, et al.
Mo nsumption of red wine reduces the risk of heart disease and extends lifespan, which these healthy benefits are often attributed to its high antioxidant
D Y, eodctemety. {64201 What are the health benefits and risks of red wine?
What are the health benefits and risks of red wine?
2 Contribution of Red Wine Consumption to Human Health Protection. v . . ’
v According to WebMD, red wine’s

5 0, o 5 o ) A o A S 1 i Well red wine definitely has health
e benefits, like promoting heart health, health, anti-bacterial properties, and

anti-bacterial properties, lowering your lowering your risk of certain cancers

S R e e o e risk of certain cancers and much more. [webmd.com]. On the other hand, the

On the other hand it may stain your Mayo Clinic reports that red wine may
teeth and cause the more than stain your teeth and cause the

4  The alcohol industry lobby and Hong Kong's zero wine and beer tax policy. v OccaSionaI hang over. OccaS|Ona| hang over [may0C|iniC Org]

industry materials, it is apparent that the coalition devoted particular attention to the positive health effects of wine drinking. Massive publicity

Da

benefits include promoting heart

3 Isdopamine behind the health benefits of red wine? v

Peer-reviewed European journal of nutrition () 2006 Aug1

Yoon, Sungwon

Peer-reviewed [ smcpublicheaitn (@ 2012aug1

5 Antihypertensive Angiotensin I-Converting Enzyme Inhibitory Activity and Antioxidant Activity v
of Vitis hybrid-Vitis coignetiae Red Wine Made with Saccharomyces cerevisiae.

Jeong-Hoon Jang, Jong-Soo Lee.

Many studies have reported the health benefits of red wine [1-6]; however, only a few have investigated the cardiovascular and anti-dementia functionalities of
red
or-reviewed @ Mycobiology @ 20m1um

Figure 3: Example domain-specific search engine (left), pre-trained language model (middle), and
envisioned domain expert (right) responses for the query “What are the health benefits and risks

of red wine?”.
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Response Generation

« Desired aspects to have in the response

- Authoritative
: Responses should generate content by pulling from highly authoritative sources

- Transparent

: Whenever possible, the provenance of the information being presented to the user should
be made available to them.

- Unbiased

. Pre-trained LMs are trained to maximize their predictive power on their training data, and
thus they may reflect societal biases in that data
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Response Generation

« Desired aspects to have in the response

- Diverse perspective
: Generated responses should represent a range of diverse perspectives but should not be
polarizing

- Accessible
- Written in terms that are understandable to the user
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Reasoning Capabilities

« Desired aspects in modularity

- Memory-like Inductive bias: Memory Network:-:- etc.
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Reasoning Capabilities

« Desired aspects in modularity

- Relational Inductive bias: Retrieving Reasoning Paths

Reasoning Path Retrieval Reading and Answering Reasoning Path

https://arxiv.org/pdf/1911.10470.pdf
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Reasoning Capabilities

« Desired aspects in modularity
- Arithmetic Reasoning
e.g. 36,500 USD to pounds

- Logical Reasoning
e.g. All men are mortal. Socrates is a man. Therefore, Socrates is mortal.

- Temporal Reasoning
e.g. 2am PST to GMT-2

- Geographical Reasoning
e.g. how far is California from New York City
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Combining Modalities

« Expecting Modalities
- Metadata

- Media content (images, video, and audio)
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MLP
Head

Transformer Encoder

|
w00 dnd dd

ll J bxld Llne 1rPr0JeLl|0n ofFI lllened Pllches
SEE 1T 2
m%s—».ilm,iﬁﬁﬂﬂ
A s P

https://arxiv.org/pdf/2010.11929.pdf

Transformer Encoder

Norm

Multl Head
Alto.nhon

Embedded
Patches

25



Document and Corpus Structure

« Expecting Structures

- Open corpus (web) Graph structure

— ConceptNet originated from the crowdsourcing project Open :
. . ConceptNet semantic network
Mind Common Sense, which was launched in 1999 at the MIT
has common sense
knowledge graph ———— knowledge

Media Lab. It has since grown to include knowledge from

other crowdsourced resources, expert-created resources, and | partor
is used for natural language part of artificial
understanding intelligence

games with a purpose.
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Multiple Languages

« Expecting Properties

- Cross-lingual IR

- Balancing proportions between the training data from diverse languages
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Scale

« Expecting Difficulties
- Model Capacity

- Size/Length of Documents

- Computation

28



Learning

« Desired way of Learning

- Incremental Learning
: incremental learning is a method of machine learning in which input data is continuously
used to extend the existing model's knowledge i.e. to further train the model.

- Continual Learning: studies the problem of learning from an infinite stream of data,
with the goal of gradually extending acquired knowledge and using it for future learning

= Online Learning: without demanding offline training of large batches or separate tasks
introduces fast acquisition of new information

https://arxiv.org/abs/1909.08383
https://arxiv.org/pdf/1802.07569.pdf 29



Other Important Aspects

« Model Interpretability

- itis well-known that modern deep neural networks suffer from interpretability issues

« Model Controllability

- model designer should know how to control the behavior of the trained model

« Model Robustness
_ llthell _) lltehll
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Conclusions




Conclusions

« Model-based information retrieval framework

- breaks away from the traditional index-retrieve-then-rank paradigm by encoding the
knowledge contained in a corpus in a consolidated model that replaces the indexing,
retrieval, and ranking components of traditional systems

- adapt to new low resource tasks and corpora (via zero- and few-shot learning), and can be
used to synthesize high quality responses that go well beyond what today's search and
guestion answering systems are capable of.
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