추천 시스템에서 matrix completion 문제 해결 방법

양영욱

Contents

○ 추천 시스템 구조○ 추천 시스템의 문제

- Matrix completion Problem
- Collaborative Filtering
- Sparsity Problem
- Matrix factorization

수천 문제란? 아용자-상품 아용자 u가 아이템 i를 얼마나 좋아하나? r_{ui} 즉, 사용자 u가 아이템 i를 좋아할 것인가 하지 않을 것인가를 예측하는 모델을 찾는 문제

Matrix Completion Problem

movie	.1	2	3	4	5	6	7	8
user 1	3	5	*	4	1	*	*	2^{-}
user2	*	3	5	1	2	*	*	3
user3	4	1	*	4	1	*	3	2
user4	5	2	*	*	2	3	*	*
user 5	*	2	4	2	*	*	1	2
user6	5	*	*	5	4	*	*	4
user7	1	*	5	2	3	1	5	3
user8	*	3	2	1	4	*	*	*_

OMatrix의 빈 곳을 채우는 문제 ○R은 완전한 matrix를 의미 ○R에는 결함이 없다고 가정

$$\min_{\hat{R}} \|\hat{R} - R\|_F^2$$

Collaborative Filtering

• List of m Users and a list of n Items

- Each user has a **list of items** with associated **opinion**
 - Explicit opinion a rating score
 - Sometime the rating is implicitly purchase records or listen to tracks
- Active user for whom the CF prediction task is performed
- Metric for measuring similarity between users
- Method for selecting a subset of **neighbors**
- Method for predicting a rating for items not currently rated by the active user.

Collaborative Filtering

• The basic steps:

- ⊙ 1. Identify set of ratings for the **target/active user**
- ⊙ 2. Identify set of users most similar to the target/active user according to a similarity function (neighborhood formation)
- ⊙3. Identify the products these similar users liked
- ●4. Generate a prediction rating that would be given by the target user to the product - for each one of these products
- ⊙ 5. Based on this predicted rating recommend a set of top N products

User-base CF(1)

	SHERLOCK	HOUSE	Avenidens.	ARDESTED Deletoffication	B Breaking Bad	P WÁLKING DEAD	5
2	2		2	4	5		
Ω	5		4			1	
2			5		2		
		1		5		4	
2			4			2	
	4	5		1			

sim(u,v)

NA

User-base CF(2)

sim(u,v)

NA

User-base CF(3)

sim(u,v)

NA

0.87

1

User-base CF(4)

	SHERLOCK	HOUSE	Avencens.	ARRESTED	Breaking Bed	WALKING DEAD	sim(u
2	2		2	4	5		NA
2	5		4			1	0.87
3			5		2		1
		1		5		4	-1
			4			2	
	4	5		1			NA

m(u,v)

User-base CF(5)

sim(u,v)

NA

0.87

1

Sparsity problem

• If you represent the Netflix Prize rating data in a User/Movie matrix you get...

- ⊙ 500,000 x 17,000 = 8,500 M positions
- Out of which only 100M are not 0's!
- OMethods of dimensionality reduction

• Matrix factorization

Matrix factorization

○R에 가까운 Â을 찾는 문제 ⊙Optimization problem

Regularization term

Non-convex function(local optimum)

ogradient descent method

