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Reinforcement Learning....

* Reinforcement Learning(RL) is learning what to do so as to maximize
a numerical reward signal.

* It is a general purpose framework for decision making
* RL is for an agent with the capacity to act
e Each action influences the agent’s future state
* Success is measured by a scalar reward signal
* Goal: select actions to maximize future reward



If loss, reward = -1

Otherwise, reward =0

Environment




Cons to RL approach

Inflexible question Poor robustness

types e The user answers are

e Agent: Would you like to too simple to be
watch in Seattle? misunderstood so cant

deal with noise in real
user utterances.

User requests
during dialogues
e User:Which theater can |

book 3 tickets for 10
cloverfield lane?
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E2E Task Completion Neural Dialogue System
Contributions:

Robustness

-
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~
Propose a neural dialogue
system with greater
robustness by automatically
selecting actions based on
uncertainty and confusion by

reinforcement learning.
J

Provide the first systematic
analysis to investigate the
impact of different types of
natural language
understanding errors

~
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Flexibility
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This is the first neural dialogue
system that allows
user-initiated behaviors
during conversations
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Reproducibility
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Demonstrate how to evaluate
RL dialogue agents using
crowd sourced task-specific
datasets and simulated users
in an end-to-end fashion.
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Proposed Framework

Observation .
— e User simulator
Text Input: Are there any action movies to see this weeker
\ =) * User agenda modeling component based at the dialogue act level is
User Simulator Neural Disloges System applied to control the conversation exchange conditioned on the
, ; generated user goal.
Matural Language Generation Language Understanding
A v * An NLG module is used to generate natural language texts corresponding
User Agenda Modeling Dialogue Management to the user dialogue actions

'| Dialogue Policy: request_locatior |

* Neural Dialogue
* The utterance passes through the LU and becomes a
corresponding semantic frame.

* The DM is to accumulate the semantics from each
utterance, robustly track the dialogue states during the
conversation and generate the next system action.

Action



e Slot filling and

Neural Dialog System sequerce: SN
(Hakkani-Tur output sequence
et al., 2016)

e Language Understanding
* This is mainly viewed as an
utterance classification task.
* The LU component is implemented with a
single LSTM, which performs intent prediction and slot filling simultaneously

* The weights of the LSTM model are trained using backpropagation to
maximize the conditional likelihood of the training set labels

* The predicted tag set is a concentrated set of IOB-format slot tags and intent
tags

* thus this model can be trained using all available dialogue actions and utterance pairs in
our labeled dataset in a supervised manner

Slot Filling Intent Prediction



Neural Dialog System

* Dialog Management

* Dialog state tracking

* A symbolic query is formed

* The state tracker will be updated based on the available results

* The state tracker will prepare the state representation for policy learning
* Policy learning

* Conditioned on the state representation, the policy is to generate the next available
system action



Deep RL for training DM

o Input: current semantic frame observation, database
returned results

o Output: system action Semantic Frame
request_movie
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Succesor State

* Two important DQN tricks
* Target network usage Action
* Experience replay strategy

Environment [«

* Buffer update strategy

* Accumulate all experience tuples from the simulation and flush the pool till
the current RL agent reaches a success rate threshold

* A threshold which is equal to the performance of a rule-based agent
* Use the experience tuples from the current RL agent to refill the buffer

* If the current DQN agent is better than the target network, the
experience replay buffer will be flushed.



User Simulation

* A user simulator is required to automatically and naturally interact
with the dialogue system.

* It first generates a user goal
* Inform_slots for slot-value pairs that serve as constraints from the user

* Request_slots for slots whose value the user has no information about but
wants to get values from the agent during the conversation.

’ﬁ ’5 Simulated User
> -

Corpus

Real User T l Interaction

" Dialogue Management (DM)
* Dialogue State Tracking (DST)
. * Dialogue Policy



User Agenda Modeling

« The user simulator maintains a compact, stack-like representation
called user agenda
* Where the user state s, is factored into an agenda A and a goal G.
* The goal consists of constraints C and request R.

* At each time-step t, the user simulator generates the next user action a,, ;

based on the current state s, ; and the last agent action a,,, +—; and then
updates the current status s’y ¢.



Natural Language Generation (NLG)

* The NLG module generates natural language texts

* To control the quality of user simulation given limited labeled data, a

hybrid model is employed
* Template based NLG
* Model based NLG

* Trained on the labeled dataset with a sequence-to-sequence model.
* It takes dialogue acts as input, and generates sentence sketch with
slot placeholders via an LSTM decoder. Then a post-processing scan is
performed to replace the slot placeholders with their actual values
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Intent-Level Error

* Group types
* Group 1: greetings, thanks, closing etc
* Group 2: inform(moviename = ‘Titantic’, starttime="7pm’)
* Group 3: request(starttime; moviename = ‘Titanic’)

*Error types
* LO: random noisy intent from within group error or between group error
* L1: within group error; real intent is request_theater but predicted
intent is request_moviename
* L2: between group error; real intent is request_moviename but predicted
intent is inform_moviename



Slot-Level Error

* SO: Randomly set to the 3 types
*S1: Slot deletion; a scenario where the slot is not recognized by LU

*S2: Incorrect slot value; a scenario where the slot name is correctly
recognized but the slot value is wrong

*S3: Incorrect slot; a scenario where both the slot and its value are
incorrectly recognized



Experiments

Annotations
request, inform, deny, confirm_question,
* Goal: Booking movie tickets Intent | confirm_answer, greeting, closing, not_sure,
o multiple_choice, thanks, welcome
* Criteria: actor, actress, city, closing, critic_rating,
e whether a movie is date, description, distanceconstraints,
booked greeting, implicit_value, movie_series,

moviename, mpaa_rating, numberofpeople,

 Whether the movie Slok numberofkids, taskcomplete, other, price,
satisfies the user seating, starttime, state, theater,
constraints theater_chain, video_format, zip, result,

ticket, mc_list

* Dataset: From Amazon
Mechanical Turk

e 280 labeled dialogues

e 11 dialogue acts and 29
slots




* Dialog Manager receives frame
level information

* No error model: perfect
recognizer and language
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e User simulator sends natural
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(a) Frame-level semantics for training (b) Natural language for end-to-end training

* The RL Agents performs significantly better than Rule based systems
* However, adapting to noises from LU and NLG takes longer when training natural language

* Frame level semantics show greater robustness in real-world scenarios

Simulated User Evaluation




Intent Error

* Error Type

* LO: random noisy intent

e L1: within group error

e L2: between group error
* Error Rate

* 1L3:0.00

* L4:0.10

e |L5:0.20



Success Rate
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(a) Intent Error Type Analysis (b) Intent Error Rate Analysis

* Incorrect intents have similar impact no matter what categories they belong to

* When the intent error rate increases, the dialogue agent performs slightly worse, but the
difference is subtle

» All RL agents can converge to a similar success rate in bo
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Slot Error

*Error Type
* SO: Random
» S1: Slot deletion
» S2: Incorrect slot value
* S3: Incorrect slot

* Error Rate
* 53:0.00
* 54:0.10
* 5$5:0.20
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(c) Slot Error Type Analysis (d) Slot Error Rate Analysis

* Incorrect slot value(s2) performs worst.

* The dialogue agent performs worse as the slot error increases

Slot Error Analysis

Average Turns




Human
Evaluation

* 110 dialogue sessions from 8
human users

e Gave a rating on a scale from
1(worst) to 5(best) based on
both naturalness and
coherence of the dialogue
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Conclusion

User goal: Two tickets for “the witch” tomorrow 9:30 PM at regal meridian 16, Seattle.

RULE BASED SYSTEM

User: Can | get 2 tickets for the witch?

Agent: Which theater do you want?

User: Regal meridian 16

Agent: What time would you like to see it?

User: 9:30 pm

Agent: What date would you like to see it?

User: Tomorrow! 2=

Agent: How many people are you? .1
PR —

User: Just two adults.
Agenﬁl.fhat is your location?
User: Seattle!

(Agent: What kind of video format do you like?
User: Oh, any kind is okay.
Agent: Do you have any price constraint?
User: No, | don’t care,
Agent: Great - | was able to purchase 2 tickets for
you to see the witch tomorrow at regal meridian 16
theater in Seattle at 9:30 pm.
User: Thank you.
Agent: Thank you!

REINFORCEMENT LEARNING SYSTEM
User: Can | get 2 tickets for the witch?
Agent: What date would you like to see it?
User: Tomorrow
Agent: Which theater do you prefer?
User: Regal meridian 16
Agent: What is your location?
User: Seattle
Agent: What time would you like to see it?
User: 9:30 pm.
Agent: Great - | was able to purchase 2 tickets for
you to see the witch tomorrow at regal meridian
16 theater in Seattle at 9:30 pm.
User: Thanks.
Agent: Thanks!
T 06 RL Agent
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The system can learn how to efficiently

interact with users for task completion
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