End to End Task Completion Neural Dialogue Systems

Xiujun Li, Yun-Nung Chen, Lihong Li, Jianfeng Gao and Asli Celikyilmax

Microsoft Research

Aiyanyo Imatitikua D.

Task-Oriented Dialogue System

Reinforcement Learning....

- Reinforcement Learning(RL) is learning what to do so as to maximize a numerical reward signal.
- It is a general purpose framework for decision making
 - RL is for an agent with the capacity to act
 - Each action influences the agent's future state
 - Success is measured by a scalar reward signal
 - Goal: select actions to maximize future reward

Cons to RL approach

- Supervised learning for each component and reinforcement learning for end-to-end training the neural dialogue system
- The system can learn how to efficiently interact with users for task completion

Main Idea

E2E Task-Completion Bot (TC-Bot)

E2E Task Completion Neural Dialogue System Contributions:

Proposed Framework

• User simulator

- User agenda modeling component based at the dialogue act level is applied to control the conversation exchange conditioned on the generated user goal.
- An NLG module is used to generate natural language texts corresponding to the user dialogue actions

• Neural Dialogue

- The utterance passes through the LU and becomes a corresponding semantic frame.
- The DM is to accumulate the semantics from each utterance, robustly track the dialogue states during the conversation and generate the next system action.

Neural Dialog System

- Language Understanding
 - This is mainly viewed as an utterance classification task.

The LU component is implemented with a

- single LSTM, which performs intent prediction and slot filling simultaneously
- The weights of the LSTM model are trained using backpropagation to maximize the conditional likelihood of the training set labels
- The predicted tag set is a concentrated set of IOB-format slot tags and intent tags
 - thus this model can be trained using all available dialogue actions and utterance pairs in our labeled dataset in a supervised manner

Neural Dialog System

- Dialog Management
 - Dialog state tracking
 - A symbolic query is formed
 - The state tracker will be updated based on the available results
 - The state tracker will prepare the state representation for policy learning
 - Policy learning
 - Conditioned on the state representation, the policy is to generate the next available system action

Deep RL for training DM

Input: current semantic frame observation, database returned results

Deep Q-Networks for Policy

E2E Reinforcement Learning

- Two important DQN tricks
 - Target network usage
 - Experience replay strategy
- Buffer update strategy

- Accumulate all experience tuples from the simulation and flush the pool till the current RL agent reaches a success rate threshold
 - A threshold which is equal to the performance of a rule-based agent
- Use the experience tuples from the current RL agent to refill the buffer
- If the current DQN agent is better than the target network, the experience replay buffer will be flushed.

User Simulation

- A user simulator is required to automatically and naturally interact with the dialogue system.
- It first generates a user goal
 - Inform_slots for slot-value pairs that serve as constraints from the user
 - Request_slots for slots whose value the user has no information about but wants to get values from the agent during the conversation.

User Agenda Modeling

- The user simulator maintains a compact, stack-like representation called user agenda
 - Where the user state s_u is factored into an agenda A and a goal G.
 - The goal consists of constraints C and request R.
 - At each time-step t, the user simulator generates the next user action $a_{u,t}$ based on the current state $s_{u,t}$ and the last agent action $a_{m,t-1}$ and then updates the current status $s'_{u,t}$.

Natural Language Generation (NLG)

- The NLG module generates natural language texts
- To control the quality of user simulation given limited labeled data, a hybrid model is employed
 - Template based NLG
 - Model based NLG
 - Trained on the labeled dataset with a sequence-to-sequence model.
 - It takes dialogue acts as input, and generates sentence sketch with slot placeholders via an LSTM decoder. Then a post-processing scan is performed to replace the slot placeholders with their actual values

Intent-Level Error

- Group types
 - Group 1: greetings, thanks, closing etc
 - Group 2: inform(moviename = 'Titantic', starttime='7pm')
 - Group 3: request(starttime; moviename = 'Titanic')
- Error types
 - LO: random noisy intent from *within group error* or *between group error*
 - L1: within group error; real intent is request_theater but predicted intent is request_moviename
 - L2: *between group error*; real intent is **request_moviename** but predicted intent is **inform_moviename**

Slot-Level Error

- S0: Randomly set to the 3 types
- S1: Slot deletion; a scenario where the slot is not recognized by LU
- S2: Incorrect slot value; a scenario where the slot name is correctly recognized but the slot value is wrong
- S3: Incorrect slot; a scenario where both the slot and its value are incorrectly recognized

Experiments

- Goal: Booking movie tickets
- Criteria:
 - whether a movie is booked
 - Whether the movie satisfies the user constraints
- Dataset: From Amazon Mechanical Turk
 - 280 labeled dialogues
 - 11 dialogue acts and 29 slots

Annotations	
Intent	request, inform, deny, confirm_question, confirm_answer, greeting, closing, not_sure, multiple_choice, thanks, welcome
Slot	actor, actress, city, closing, critic_rating, date, description, distanceconstraints, greeting, implicit_value, movie_series, moviename, mpaa_rating, numberofpeople, numberofkids, taskcomplete, other, price, seating, starttime, state, theater, theater_chain, video_format, zip, result, ticket, mc_list

- Dialog Manager receives frame level information
 - No error model: perfect recognizer and language understanding
 - Error model: simulate the possible errors

Frame-Level Interaction

- User simulator sends natural language
 - No recognition error
 - Errors from Natural Language Generator or Language Understanding module

Natural Language Level Interaction

- (d) I fame-level semances for training (b)
- The RL Agents performs significantly better than Rule based systems
- However, adapting to noises from LU and NLG takes longer when training natural language
- Frame level semantics show greater robustness in real-world scenarios

Simulated User Evaluation

Intent Error

• Error Type

- LO: random noisy intent
- L1: within group error
- L2: between group error
- Error Rate
 - L3: 0.00
 - L4: 0.10
 - L5: 0.20

(a) Intent Error Type Analysis

(b) Intent Error Rate Analysis

- Incorrect intents have similar impact no matter what categories they belong to
- When the intent error rate increases, the dialogue agent performs slightly worse, but the difference is subtle
- All RL agents can converge to a similar success rate in both intent error analysis

Intent Error Analysis

Slot Error

• Error Type

- SO: Random
- S1: Slot deletion
- S2: Incorrect slot value
- S3: Incorrect slot
- Error Rate
 - S3: 0.00
 - S4: 0.10
 - S5: 0.20

(c) Slot Error Type Analysis

(d) Slot Error Rate Analysis

- Incorrect slot value(s2) performs worst.
- The dialogue agent performs worse as the slot error increases

Slot Error Analysis

Human Evaluation

- 110 dialogue sessions from 8 human users
- Gave a rating on a scale from 1(worst) to 5(best) based on both naturalness and coherence of the dialogue

Conclusion

User goal: Two tickets for "the witch" tomorrow 9:30 PM at regal meridian 16, Seattle.

RULE BASED SYSTEM

User: Can I get 2 tickets for the witch? Agent: Which theater do you want? User: Regal meridian 16 Agent: What time would you like to see it? User: 9:30 pm Agent: What date would you like to see it? User: Tomorrow! Agent: How many people are you? User: Just two adults. Agent: What is your location? User: Seattle! Agent: What kind of video format do you like? User: Oh, any kind is okay. Agent: Do you have any price constraint? User: No, I don't care. Agent: Great - I was able to purchase 2 tickets for you to see the witch tomorrow at regal meridian 16 theater in Seattle at 9:30 pm. User: Thank you. Agent: Thank you!

REINFORCEMENT LEARNING SYSTEM

User: Can I get 2 tickets for the witch? Agent: What date would you like to see it? User: Tomorrow Agent: Which theater do you prefer? User: Regal meridian 16 Agent: What is your location? User: Seattle Agent: What time would you like to see it? User: 9:30 pm. Agent: Great - I was able to purchase 2 tickets for you to see the witch tomorrow at regal meridian 16 theater in Seattle at 9:30 pm. User: Thanks.

Agent: Thanks!

0

. In a ded Lucondet man alter by print

The system can learn how to efficiently interact with users for task completion

100 200 300 400 500 600 Simulation Epoch