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Background

Brief Introduction to Generative 
Adversarial Nets
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▪ Transforms input to output

▪ NN is a “set of weights(parameters)”

▪ Need to change the weights(train) to make it 
do what we want

Neural Networks
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▪ With loss and gradient

How to Train a NN
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▪ The previous slide shows an example of a 
classification model – from image to vector

▪ Can we do it the opposite way? – from vector to 
image

▪ We can try to feed a vector to the model, and 
give an image that we want to generate as the 
label

▪ Minimizing the L1 or L2 distance between 
output and label images will (hopefully) train out 
model

Generating Images
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Generating Images
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▪ Tends to generate blurry outputs

Results

8

Generated Original



▪ L2 loss trains the model in a way that it 
generates an “average” of possible outputs

Why Blurry?
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▪ Can we have a loss function that says “generate 
images that look like real images”?

▪ Adversarial loss in Generative Adversarial 
Network(GAN) does this

▪ GAN consists of two NNs, Generator and 
Discriminator

▪ Generator: generate fake samples, tries to fool the 
Discriminator

▪ Discriminator: tries to distinguish between real and fake 

samples

A Better Loss Function
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GAN’s Architecture
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▪ Generator network generates an output 
(fake) image from a latent random vector z

Generator Network
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▪ Discriminator network takes a real/fake image 
as input and discriminates it as real/fake

Discriminator Network
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▪ Update the weights of D to “minimize” the 
real/fake classification loss

Training D Network
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▪ Update the weights of G to “maximize” the 
real/fake classification loss

Training G Network
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Loss Function and Training 
Algorithm



▪ Doesn’t require labeled data

▪ Tends to generate sharper outputs

▪ Instead of minimizing Kullback-Leibler
divergence, it minimizes Jensen-Shannon 
divergence / Wasserstein distance / …

Advantages of GAN
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Introduction

Image-to-Image Translation with 
Conditional Adversarial 
Networks
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Introduction
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▪ Many problems in image processing, graphics, 
and vision involve translating an input image 
into a corresponding output image

▪ Conditional GANs are a general-purpose 
solution that appears to work well on a wide 
variety of these problems

▪ Earlier papers have focused on specific 
applications



Introduction
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▪ Demonstrate that on a wide variety of 
problems, conditional GANs produce 
reasonable results

▪ Present a simple framework sufficient to 
achieve good results

▪ Analyze the effects of several important 
architectural choices

Contribution
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Related Work & 
Method

Image-to-Image Translation with 
Conditional Adversarial 
Networks
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▪ With vanilla GAN, we cannot control what to 
generate

▪ If we have labeled data, we can condition on 
this label to control the output ⇨ Conditional 
GAN

▪ Make a pair of input and label, and D network 
tries to discriminate between real and fake “pair”

▪ G network is given a label as input, instead of a 
random vector

Conditional GAN
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Conditional GAN
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▪ Conditional GANs learn a mapping from observed 
image 𝑥 and random noise vector 𝑧, to 𝑦
𝐺: {𝑥, 𝑧} → 𝑦

Objective Function
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▪ Final objective function

▪ Random noise vector 𝑧 didn’t have any impact on 
the result - the generator learned to ignore the 
noise. Therefore, no noise vector is fed to the G 
network



▪ Previous approaches have found it beneficial to 
mix the GAN objective with L1/L2 loss

▪ Either L1 or L2 can be used, but previous studies 
shows that L1 loss results in less blurry result

Objective Function
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▪ For many image translation problems, there is a 
great deal of low-level information shared 
between the input and output

▪ To help this information flow, they use a 
encoder-decoder network with skip 
connections(depth-wise concatenation) as the G 
network

Generator with Skips
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▪ L1 loss in the objective is good enough to capture 
low frequencies, so GAN objective doesn’t need 
to be applied at image-level

▪ PatchGAN discriminator tries to classify if each N 
× N patch in an image is real or fake. Run this 
convolutionally across the image, and average all 
responses

▪ Advantages: fewer parameters, runs faster, can 
be applied on arbitrarily large images

PatchGAN
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PatchGAN
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▪ One G step + one D step

▪ Divide objective by 2 for D to slow down D 
training

▪ Minibatched SGD with Adam optimizer

▪ Batch size: 1~10

▪ Apply dropout on both train and test phase (as a 
noise)

▪ Apply batch normalization

Optimization and Inference
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Experiments

Image-to-Image Translation with 
Conditional Adversarial 
Networks
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▪ Semantic labels ↔ photo

Generality of Conditional GANs
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▪ Architectural labels → photo

▪ Map ↔ aerial photo




