## Unsupervised Neural Machine Translation

조재춘 소아람 이찬희 김규경



latural Language Processing 2 Artificial Intelligence

**KOREA** UNIVERSITY

## 66 INDEX

Background Introduction Related Work & Method Experiments Conclusion



## Background

Brief Introduction to Sequence to Sequence Models

## Neural Networks

- Transforms input to output
- NN is a "set of weights(parameters)"
- Need to change the weights(train) to make it do what we want



## Sequence to Sequence Models

- Transforms one sequence to another sequence
  - E.g. He loved to eat. -> Er liebte zu essen.

He loved to eat.

Er liebte zu essen.

 Use Recurrent Neural Networks(RNN) to handle sequences of varying length

## Sequence to Sequence Models

- Sequence to sequence(seq2seq) model has two main components - encoder, decoder
- Encoder encodes a sequence of tokens(e.g. words) into a sequence of vectors
- Decoder decodes the output of encoder(vectors) into a sequence of tokens(e.g. words)



- Use the final output vector of encoder to initializer decoder state
- Decoder performs greedy decoding using its previous output
   *Fr. liebte. zw. essen*





- Input sequence is encoded into a single vector, which becomes a bottleneck
- Translation quality decreases as the input sentence gets longer



## Seq2seq with Attention



 $p(y_i|y_1, \dots, y_{i-1}, \mathbf{x}) = g(y_{i-1}, s_i, c_i)$   $s_i = f(s_{i-1}, y_{i-1}, c_i)$   $c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j$   $\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_x} \exp(e_{ik})}$   $e_{ij} = a(s_{i-1}, h_j)$ 

 Consider the weighted combination of all the encoder outputs, not just the last hidden state

## Seq2seq with Attention





 Seq2seq models with attention can handle long sequences well





## Introduction

#### Unsupervised Neural Machine Translation



- Neural Machine Translation(NMT) has become the dominant paradigm to machine translation
- However, NMT requires a large parallel corpus to be effective
- Lack of large parallel corpora is a practical problem for the vast majority of language pairs, including low-resource languages (e.g. Basque) as well as many combinations of major languages (e.g. German-Russian) 13



- This paper proposes a method to train a NMT in a completely unsupervised manner, relying solely on monolingual corpora
- It builds upon the recent work on unsupervised cross-lingual embeddings
- They test the proposed method on unsupervised, semi-supervised, and supervised settings



# Related Work & Method

Unsupervised Neural Machine Translation

- The proposed method uses a pre-trained cross-lingual embeddings in the encoder
  - The following will be a brief explanation of how it is formed.
  - The premises of the cross-lingual embeddings are based on the previous work from the authors of this paper.
    - Learning bilingual word embeddings with (almost) no bilingual data by Mikel Artetxe, Gorka Labaka, Eneko Agirre

- Distinctive Features of the Unsupervised Cross-Lingual embeddings are…
  - Reduced the need of large bilingual dictionaries to much smaller seed dictionaries

- Dictionary is used to learn the embedding mapping and the embedding mapping is used to induce a new dictionary.
   → Stated as a self learning fashion
  - $\rightarrow$  Stated as a self learning fashion

#### The proclaimed 'Self-learning framework' is as follows:

Algorithm 1 Traditional framework

- **Input:** X (source embeddings)
- **Input:** *Z* (target embeddings)
- **Input:** *D* (seed dictionary)
  - 1:  $W \leftarrow \text{LEARN}_MAPPING(X, Z, D)$
  - 2:  $D \leftarrow \text{Learn_dictionary}(X, Z, W)$
  - 3: EVALUATE\_DICTIONARY(D)



- The proclaimed 'Self-learning framework' works as follows:
  - Learn mapping W<sub>1</sub> based on X, Z and seed dictionary D<sub>0</sub>.

 $W_1 \leftarrow LEARN\_MAPPING(X, Z, D_0)$ 

Learn dictionary D<sub>0</sub> based on X, Z and W<sub>1</sub>.

 $D_1 \leftarrow LEARN_DICTIONARY(X, Z, W_1)$ 

- Assuming that the  $D_1$  is better than the  $D_0$ ,  $D_1$  should serve to learn a better mapping  $W_2$  and, consequently, an even better dictionary  $D_2$  the second time.
- The process is to be repeated iteratively to obtain a hopefully better mapping and dictionary each time until some convergence criterion is met.

The proclaimed 'Self-learning framework' works as follows:

Algorithm 2 Proposed self-learning frameworkInput: X (source embeddings)Input: Z (target embeddings)Input: D (seed dictionary)1: repeat2:  $W \leftarrow \text{LEARN\_MAPPING}(X, Z, D)$ 3:  $D \leftarrow \text{LEARN\_DICTIONARY}(X, Z, W)$ 

- 4: **until** convergence criterion
- 5: EVALUATE\_DICTIONARY(D)



 Dual structure - handle both directions together (e.g. French ↔ English)







 Fixed embeddings in the encoder - use pretrained cross-lingual embeddings in the encoder that are kept fixed during training





 Denoising - like denoising autoencoders, alter the word order of the input sentence by making random swaps between contiguous words



## S Unsupervised Training

- Backtranslation
  - 1. Obtain a pseudo-parallel corpus: use the system in inference mode with greedy decoding to translate it to the other language
  - 2. Train the system to predict the original sentence from this translation, using the pseudo-parallel corpus



## Losses and Training Procedure

- Losses (Languages L1, L2)
  - 1. Denoising L1
  - 2. Denoising L2
  - 3. Backtranslation L1  $\Rightarrow$  L2  $\Rightarrow$  L1
  - 4. Backtranslation L2  $\Rightarrow$  L1  $\Rightarrow$  L2
- Alternate these different training objectives from batch to batch



## Experiments

#### Unsupervised Neural Machine Translation



- Datasets (WMT 2014)
  - French  $\leftrightarrow$  English
  - German ↔ English

#### Evaluation

Tokenized BLEU(Bilingual Evaluation Understudy) score

#### BLEU score

- N-gram overlap between machine translation output and reference translation
- Compute precision for n-grams of size 1 to 4

System A: Israeli officials responsibility of airport safety 2-grammatch

Reference: Israeli officials are responsible for airport security

System B: airport security Israeli officials are responsibility 4-grammatch

| Metric            | System A | System B |
|-------------------|----------|----------|
| precision (1gram) | 3/6      | 6/6      |
| precision (2gram) | 1/5      | 4/5      |
| precision (3gram) | 0/4      | 2/4      |
| precision (4gram) | 0/3      | 1/3      |
| brevity penalty   | 6/7      | 6/7      |
| BLEU              | 0%       | 52%      |

#### Unsupervised

- System has access to nothing but monolingual corpora
- Data
  - News Crawl Corpus with articles form 2007-2013

### Semi-supervised

- monolingual corpora, small in-domain parallel corpus
- Data
  - News Crawl Corpus with articles form 2007-2013
  - 100,000 random sentence pairs from News commentary parallel corpus

#### Supervised

- Large parallel corpus
- Data
  - Europarl
  - Common Crawl
  - News Commentary
  - UN corpus
  - Gigaword corpus (French English)



- Tokenization
- Truecasing
- Byte pair encoding(BPE)
  - Using 50,000 operations
  - Replacing OOV words with special token *(UNK)*



#### BLEU scores

|                 |                                                                                                                                                    | FR-EN                          | EN-FR                          | DE-EN                          | EN-DE                        |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|------------------------------|
| Unsupervised    | <ol> <li>Baseline (emb. nearest neighbor)</li> <li>Proposed (denoising)</li> <li>Proposed (+ backtranslation)</li> <li>Proposed (+ BPE)</li> </ol> | 9.98<br>7.28<br>15.56<br>15.56 | 6.25<br>5.33<br>15.13<br>14.36 | 7.07<br>3.64<br>10.21<br>10.16 | 4.39<br>2.40<br>6.55<br>6.89 |
| Semi-supervised | 5. Proposed (full) + 100k parallel                                                                                                                 | 21.81                          | 21.74                          | 15.24                          | 10.95                        |
| Supervised      | 6. Comparable NMT<br>7. GNMT (Wu et al., 2016)                                                                                                     | 20.48                          | 19.89<br>38.95                 | 15.04                          | 11.05<br>24.61               |

## Qualitative analysis

#### • **BPE** (French $\rightarrow$ English)

| Source                                                                                                                                                                                       | Reference                                                                                                                                                        | Proposed system (full)                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Une fusillade a eu lieu à<br>l'aéroport international de Los<br>Angeles.                                                                                                                     | There was a shooting in Los An-<br>geles International Airport.                                                                                                  | A shooting occurred at Los An-<br>geles International Airport.                                                                                          |
| Cette controverse croissante au-<br>tour de l'agence a provoqué<br>beaucoup de spéculations selon<br>lesquelles l'incident de ce soir<br>était le résultat d'une cyber-<br>opération ciblée. | Such growing controversy sur-<br>rounding the agency prompted<br>early speculation that tonight's<br>incident was the result of a tar-<br>geted cyber operation. | This growing scandal around the<br>agency has caused much spec-<br>ulation about how this incident<br>was the outcome of a targeted<br>cyber operation. |
| Le nombre total de morts en oc-<br>tobre est le plus élevé depuis<br>avril 2008, quand 1 073 person-<br>nes avaient été tuées.                                                               | The total number of deaths in<br>October is the highest since<br>April 2008, when 1,073 people<br>were killed.                                                   | The total number of deaths in<br>May is the highest since April<br>2008, when 1 064 people had<br>been killed.                                          |
| À l'exception de l'opéra, la province reste le parent pauvre de la culture en France.                                                                                                        | With the exception of opera, the provinces remain the poor rela-<br>tive of culture in France.                                                                   | At an exception, opera remains<br>of the state remains the poorest<br>parent culture.                                                                   |



- Proposed a novel method to train an NMT system in a completely unsupervised manner, training the system from monolingual corpora alone, combining denoising and backtranslation
- The trained system is able to model complex cross-lingual relations and produce high-quality translations
- Combining the proposed method with a small parallel corpus can bring further improvements



# **THANKS!**

Any questions?

37