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TIRG: Text Image Residual Gatin;

CVPR 2019’

* BASELINE
* No attention

Composing Text and Image for Image Retrieval

Locally Bounded
CVPR 2020

- m T

VAL_:Visualinguistic Attention Learning
CVPR 2020

. {T‘ @ ~ ] Gt By
g7 ===l

MAAF:Modality-Agnostic Attention Fusion
Arxiv 2020

« Self-Attention, Cross-Attention
* Auxiliary Module

« Self-Attention, Cross-Attention

« Self-Attention, Cross-Attention
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Fashion200k

- train 172k, test 30k, val 3k

- attribute-like (one word difference)
- "replace with ----

MIT-state(245noun/115adj)
- 60k images with object-state label

(e.g., “red tomato”, “new camera”
- fix noun, change adj

L L e T L R LT TR T o

Fashion IQ
- Workshop
- 40k images with modification text
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change o
state to —P>
melted

change

state to —pp
ancient

? is blue with
checkered

D
L& and a dark

gray tie

is grey with {
black design

* Shoes (train 10k test 4.7k)
- more enrich text
- relative caption/ description

* CSS(color, shape, size)
- train 46K test 15K
- add, remove, change object attribute
-2d->3D /3D ->3D
- more enrich text

0

are red with a
woven top
pattern

have no buckle

or wedge heel

remove
middie-ght —>
cube

F

addred
sphereto —P>
top-left

remove
middie-ight —>
cube

add red
sphereto =~
topeft
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« Composing Text and Image for Image Retrieval
= What about Generative models?

(@ 128128 ) 256x256 (© 512x512

BigGAN [Brock et al.] 2018

* Toward more high-resolution , super-resolution images with high variation such as age, gender, color, hair (in Face datasets)

*What is GAN learned? -> If we know that, Image Manipulation is possible ) )
Generative Adversarial Network(GAN)

Real dataset mm | sample \
Real
interpreting the Taned generator | ermnaor | mmp =
e ~ Fake @@

___________________________

g8

85

N3

‘

3
o
g
g
3
o
]

minmax L(D, G) = Ex—p,(x) 108 D, (X) + Ez~p, () 108(1 — Dy, (G, (2)))
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« Interpreting the trained Generator: latent unit, latent space

GAN Dissection for Interpreting Latent Units

Generator

Select a feature brush & strength and enjoy painting:

Layer-wise
stochastic vectors

Constant I |
vector

Semantic hie

Objects Attributes  Color scheme

e

Style-GAN | ]

HiGAN: Semantic Hierarchy Emerges in Deep Generative Representations
for Scene Synthesis (Arxiv 2020)

t © 2019 Natural Language Processing & Artificial Intelligence Lab
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GAN Inversion (not from z but my own image)

* > GAN generator lacks the inference ability: Encoder_constrained Optimization

zZ" = zn'gn;in |G(z) — x||* Zﬁ@ﬁx

z* = argmin ||G(z) — x||*
Z

Many recent works on adding encoder to GAN generator:

xreal — — 7 _.@_. xrec
—_— —_—
BIgBIGAN (NeurlPs'19) Adversarial Latent Autoencoders (CVPR'20) In-Domain Inversion (arXiv) Q O O @ O
R o z X
; ' z x

Unconstrained Inversion In-Domain Inversion

Out-of-Domain Inversion

Algorithm 1: Latent Space Embedding for GANs
Tnput: An image I € R™™*3 o embed; a
pre-trained generator G(.).
Output: The embedded latent code w* and the
embedded image G(u") optimzed via F.
1 Initialize latent code w* = w;
2 while not converged do
3| L Ly ,.((:(m ) 1) + G - 113
s | Wt e w —nF(V
5 end

+ optimization-based approach 4 )5
* StyleGAN (FFHQ)
* Reconstruction OK

* Manipulation -> only Face
* G2 CHE SO AFE! x

—
- StyleGAN (FFHQ): W

Image2StyleGAN [Brock et al.] 2019 . In-Domain GAN Inversion [Zhu et al.] 2020

* domain-guided encoder
* Reconstruction OK | 2
G2 CHE ZHIQ ALY . >

= Text-Guided Image Manipulation 7161
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Text Guided Image Manipulation
Text to Image Synthesis

» 1) Generative adversarial text to image synthesis (ICML, 2016)

e 2) StackGAN (ICCV, 2017)

e 3) StackGAN++ (TPAMI, 2017)

e 4) Semantic Image Synthesis via Adversarial Learning (ICCV, 2017)
e 5) AttnGAN (CVPR, 2018)

* 6) TaGAN (NIPS, 2018)
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e Generative adversarial text to image synthesis ua, .

It is the first end-to-end differentiable architecture from the character level to pixel level
(Conditions on Text Descriptions)

This flower has small, round violet R This flower has small, round violet
petals with a dark purple center :=G (z s (p(t)) petals with a dark purple center

Generator Network Discriminator Network

Figure 2. Our text-conditional convolutional GAN architecture. Text encoding ¢(t) is used by both generator and discriminator. It is
projected to a lower-dimensions and depth concatenated with image feature maps for further stages of convolutional processing.

Two sub problems:

1. Learn a text feature representation that captures the important visual details

2. Use these features to synthesis a compelling image that a human might mistake for
real

10/61
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e Generative adversarial text to image synthesis ua, .

It is the first end-to-end differentiable architecture from the character level to pixel level
(Conditions on Text Descriptions)

This flower has small, round violet R This flower has small, round violet
petals with a dark purple center =G (z s (p(t)) petals with a dark purple center

Generator Network Discriminator Network

Figure 2. Our text-conditional convolutional GAN architecture. Text encoding ¢(t) is used by both generator and discriminator. It is
projected to a lower-dimensions and depth concatenated with image feature maps for further stages of convolutional processing.

A.Deep symmetric structured joint embedding (Text Encoder)
B.Matching-aware discriminator (GAN-CLS)

C.Learning with manifold interpolation (GAN-INT)
D.Inverting the generator for style transfer

11/61
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e Generative adversarial text to image synthesis ua, .

A.Deep symmetric structured joint embedding

N

1 s

N} :1 A(yn,fv(vn)) +A(yn,ft(tn)) ) GoogleNet (Szegedy, Christian, et al. 2015)
n=

Imagenet pretrained

Char-CNN-RNN(Reed et al, 2016)
Oxford 102, CUB (pre-train)

Sequential
encoding

| The beak'is yellow a’ﬁd_\p'di'ﬁted and the wings are blue. ‘

where {(vn,tn,yn) : n = 1,..., N} is the training data set,
A is the 0-1 loss, v, are the images, ¢,, are the corres
ing text descriptions, and y,, are the class labels.
fv and f; are parametrized as follows:

fo(v) = arg max Eq 7 [6(v) " (t))]

yey
t)

Convolutional
encoding

fi(t) = arg max Evv(y) [¢(U)T
yey

where ¢ is the image encoder (e.g. a deep convolutional
neural network), ¢ is the text encoder (e.g. a character-
level CNN or LSTM), 7 (y) is the set of text descriptions
of class y and likewise V(y) for images. The intuition here
is that a text encoding should have a higher compatibility
score with images of the correspondong class compared to
any other class and vice-versa.

Figure 2: Our proposed convolutional-recurrent net.
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4 Copyright © 2019 Natural Language Processing & Artificial Intelligence Lab

Generative adversarial text to image synthesis ., )

B. Matching-aware discriminator (GAN-CLS)

The most straightforward way to train a conditional GAN is to view (text, image) pairs as joint
observations and train the discriminator to judge pairs as real or fake.

This type of conditioning is naive in the sense that the discriminator has no explicit notion of
whether real training images match the text embedding context.

min max L(D,G) = E¢p,t)x~pax) 108 Do,y (X, @(1) + Etepy(v)2~p, (z) 108(1 — Do, (G, (0 (1), 2), (D))

Algorithm 1 GAN-CLS training algorithm with step size

.In naive GAN, Discriminator inputs:
1) Real images with matching text
2) Fake images with arbitrary text

:Therefore, it must implicitly separate two sources of error:
- Unrealistic Images(for any text)
- Realistic Images with mismatch text

- Discriminator can provide an additional signal to Generator

«, using minibatch SGD for simplicity.

1: Input: minibatch images x, matching text ¢, mis-

2:
3:
4.
5:
6.
7
8

9:
10:
11:
12:
13:
14:

matching £, number of training batch steps S
forn =1to S do
h « ¢(t) {Encode matching text description}
h « ¢(#) {Encode mis-matching text description}
z ~ N(0,1)Z {Draw sample of random noise}
Z < G(z, h) {Forward through generator}
sy < D(z, h) {real image, right text}
Sw < D(z, h) {real image, wrong text}
sy < D(&, h) {fake image, right text}
Lp « log(s,) + (log(1 — sy,) + log(1 — s5))/2
D < D — adLp/dD {Update discriminator}
L',G — log(s f)
G « G — adL;/0G {Update generator}
end for

13/61




e Generative adversarial text to image synthesis o, )

C. Learning with manifold interpolation (GAN-INT)

Deep networks have been shown to learn representations in which interpolations between embedding
pairs tend to be near the data manifold

This can be viewed as adding an additional term to the generator objective to minimize
E¢, tp~pao [108(1 — D(G(Z; Bo(ty) + (1 - ﬂ)‘P(tz))]

EBecause the interpolated embeddings are synthetic, the discriminator D does not have “real” corresponding image
iand text pairs to train on.

EHowever, D learns to predict whether image and text pairs match or not.

EThus, if D does a good job at this, then by satisfying D on interpolated text embeddings G can learn to fill in
i gaps on the data manifold in between training points.

ENote that t; and t, may come from different images and even different categories.

14/61
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Generative adversarial text to image synthesis ., )

D. Inverting the generator for style transfer

If the text encoding ¢(t) captures the image content (e.g.
flower shape and colors), then in order to generate a real-
istic image the noise sample z should capture style factors
such as background color and pose. With a trained GAN,
one may wish to transfer the style of a query image onto
the content of a particular text description. To achieve this,
one can train a convolutional network to invert G to regress
from samples & < G(z,(t)) back onto z. We used a

simple squared loss to train the style encoder:
X

‘Cstyle = ]Et,z~/\/(o,1)||z - S(G(zr <P(t)))||g (6)

where S is the style encoder network. With a trained gen-
erator and style encoder, style transfer from a query image
z onto text ¢ proceeds as follows:

s+ S(z), & + G(s,0(t))

where Z is the result image and s is the predicted style.

Text descriptions Images -
(content) (style) i
— ;

The bird has a yellow breast with grey :
features and a small beak.

This is a large white bird with black
wings and a red head.

A small bird with a black head and
wings and features grey wings.

This bird has a white breast, brown
and white coloring on its head and
wings, and a thin pointy beak.

A small bird with white base and black
stripes throughout its belly, head, and
feathers.

A small sized bird that has a cream belly
and a short pointed bill. 3

This bird is completely red.

This bird is completely white.

This is a yellow bird. The wings are
bright blue.

Figure 6. Transfering style from the top row (real) images to the
content from the query text, with G acting as a deterministic de-
coder. The bottom three rows are captions made up by us.
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e Text Guide Image Manipulation (TGIM)
« Text-to-Image Synthesis (T2I)

_ TGIM Negatlve text Text + Image

1- Style Encoder QO X Concat
1- GAN-CLS, INT X O Random Concat
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StackGAN: Text to Photo-realistic Image Synthesis with
Stacked Generative Adversarial Network ac, zm)

Abstract

Synthesizing high-quality images from text descriptions
is a challenging problem in computer vision and has many
practical applications. Samples generated by existing text-
to-image approaches can roughly reflect the meaning of the
given descriptions, but they fail to contain necessary details
and vivid object parts. In this paper, we propose Stacked
Generative Adversarial Networks (StackGAN) to generate
256%256 photo-realistic images conditioned on text de-
scriptions. We decompose the hard problem into more man-
ageable sub-problems through a sketch-refinement process.
The Stage-I GAN sketches the primitive shape and colors

| conditioning | Stage-1 Generator G,
| Augmentation (CA) | for sketch |
Text descriptiont  Embedding @,/ Mo | |
[
‘This bird is grey with ! | > = : > +
whiteonits chestand > | < |
has a very short beak N N | I |
| |
| | 4 | 2NO) :
| eNO,I) | |
Embedding ¢,
I I &
| Conditioning
Au;mcmntlon |

Stage-Il Generator G for refinement

64 x64

results

64 x64
real images

(256 x256 )
real images

I
o

( =)

256 x 256

rﬂull!

Compression and
Spatial Replication

Embedding ¢,

Compression and
Spatial Replication

1
I

\
[
| |
! 128 \
I 512 |
; © o

\
T , |
! \
| J

Stage-Il Discriminator D

of the object based on the given text description, yield-
ing Stage-I low-resolution images. The Stage-1I GAN takes
Stage-I results and text descriptions as inputs, and gener-
ates high-resolution images with photo-realistic details. It
is able to rectify defects in Stage-I results and add com-
pelling details with the refinement process. To improve the
diversity of the synthesized images and stabilize the training
of the conditional-GAN, we introduce a novel Conditioning
Augmentation technique that encourages smoothness in the
latent conditioning manifold. Extensive experiments and
comparisons with state-of-the-arts on benchmark datasets
demonstrate that the proposed method achieves significant
improvements on generating photo-realistic images condi-
tioned on text descriptions.

Figure 2. The architecture of the proposed StackGAN. The Stage-I generator draws a low-resolution image by sketching rough shape and
basic colors of the object from the given text and painting the background from a random noise vector. Conditioned on Stage-I results, the
Stage-II generator corrects defects and adds compelling details into Stage-I results, yielding a more realistic high-resolution image.

Decompose the hard problem into sub-problems!!

A.Stage-1: sketch the primitive shape and colors
B.Stage-2: rectify defects
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StackGAN: Text to Photo-realistic Image Synthesis with
Stacked Generative Adversarial Network ac, wm)

A. Conditioning Augmentation

With limited amount of data, it usually causes discontinuity in the latent data manifold,
which is not desirable for learning the generator.

To mitigate this problem, we introduce a Conditioning Augmentation technique to produce
additional conditioning variables € ~ NV (u(@s), Y.(9:)), €o = Ug + 0oO€ , € ~ N(0,1)

—— e e = — | Semoe o e Char-CNN-RNN(Reed et al, 2016)
| Conditioning | Stage-l Generator G, | i

| Augmentation (CA) | | for sketch | _
e . : Sequential
Text descriptiont Embedding ¢,/ Ho | i encoding
| & | E

This bird is grey with F:tztztztztztztﬁ]
—’ ) ) h
.

white onits chestand —»
2~N(O, I A=

i Convolutional
: encoding

has a very short beak

To further enforce the smoothness over the conditioning manifold and avoiding overfitting,

add the regularization term to loss of G
D (V (u(@e), X(@¢)) | N(0,1))

18/61



« StackGAN: Text to Photo-realistic Image Synthesis with
Stacked Generative Adversarial Network o, s
C. Stage-1

Instead of directly generating a high-resolution image conditioned on the text description,
We simplify the task to first generate a low-resolution image with our Stage-I GAN, which
focuses on drawing only rough shape and correct colors for the object.

LDy = E(1g,t)~paara 108 Do (Lo, ¢1)] +
Eznp. topiata [IOg(l — Dy (GO(z’ a0), ‘Pt))]’
‘CGO = IEZ"’sttNPdata [IOg(l - DO(GO(Z, é0)7 Qot))] +
ADg (N (po(#t), Zoler)) [|N(0, 1)),

©)

4
Compression and
Spatial Replication
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« StackGAN: Text to Photo-realistic Image Synthesis with
Stacked Generative Adversarial Network v, 2o
D. Stage-2

Stage-2 GAN is built upon Stage-1 GAN results to generate high-resolution images.

It is conditioned on low-resolution images and also the text embedding again to correct defeats

In Stage-1 results. The Stage-2 Gan completes previously ignored text information to generate more
Photo-realistic details.

LD = E(1,t)~paara 108 DI, 01)] +
]ESONPGO st~Pdata [lOg(l - D(G(801 a)a Sot))]1
Le= EBONPGO,tNPda:a [IOg(l - D(G(SOa é), ‘Pt))] +
ADgc (N (u(e), E(ee)) IV (0, 1)),

©)

(©)

[
256 x 256

real images

!

—/
P—

256 x 256
results

Compression and
Spatial Replication
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« StackGAN: Text to Photo-realistic Image Synthesis with
Stacked Generative Adversarial Network ac, zm)

A small bird A small yellow  This small bird
The bird is A bird with a This small with varying bird with a has a white
Text This birdisred  short and medium orange  black bird has shades of black crown breast, light
d e.xl. and brown in stubby with bill white body  a short, slightly ~ brown with and a short grey head, and
escription color, with a yellow on its gray wingsand  curved billand  white under the  black pointed black wings
stubby beak body webbed feet long legs beak and tail
64x64
GAN-INT-CLS
128x128
GAWWN
256x256
StackGAN

- - el X
Figure 3. Example results by our StackGAN, GAWWN [24], and GAN-INT-CLS [26] conditioned on text descriptions from CUB test set.

This flower is This flower has  This flower is
This flower has  pink, white, petals that are white and Eggs fruit A street sign
Text alotofsmall  andyellowin  dark pink with  yellow in color, A group of candy nuts on a stoplight
description  PUrple petalsin  color, and has  white edges withpetals that A picturcofa  people on skis  and meat pole in the
a dome-like petals that are and pink are wavy and very clean stand in the served on middle of a
configuration  striped stamen smooth living room snow white dish day
64x64
GAN-INT-CLS

256x256 o £5-80 . f l

StackGAN 25 3 - = e

Figure 4. Example results by our StackGAN and GAN-INT-CLS [26] conditioned on text descriptions from Oxford-102 test set (leftmost
four columns) and COCO validation set (righ four col; ).

This bird is The bird has
This bird is This bird has A white bird white, black, small beak,
Text  plue with white ~ wings thatare  with a black and brownin  with reddish
description and hasavery  brownandhas  crown and color, with a brown crown
short beak ayellowbelly  yellowbesk  brownbeak  and gray belly

Stage-1
images

L 8

Stage-I1
images

This is a small,
black bird with
a white breast
and white on
the wingbars.

This bird is
white black and
yellow in color,
with a short
black beak

Figure 5. Samples generated by our StackGAN from unseen texts in CUB test set. Each column lists the text description, images generated

from the text by Stage-I and Stage-II of StackGAN.

A small bird with a black head and
wings and features grey wings

This bird is completely red with black
wings and pointy beak

256x256
Stage-1 GAN
without CA

256x256
Stage-I GAN
with CA

256x256
StackGAN
with CA,
Text twice A - i
Figure 7. Conditioning Augmentation (CA) helps stabilize the
training of conditional GAN and improves the diversity of the gen-
erated samples. (Row 1) without CA, Stage-I GAN fails to gen-
erate plausible 256 X256 samples. Although different noise vector
z is used for each column, the generated samples collapse to be
the same for each input text description. (Row 2-3) with CA but
fixing the noise vectors z, methods are still able to generate birds
with different poses and viewpoints.
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o StackGAN++: Realistic Image Synthesis with Stacked
Generative Adversarial Networks e, zom)

1. Multi-scale image distributions approximation
2. Joint conditional and unconditional distribution approximation

X
IFC with reshape I Residual UConv3x3
_______________________________________________________ . e
E ! JCU Discriminator
I I
) | real fake
= = - E
¢ axa 256x256 | =
| g X64N, xNg | G
—
|
|
|
|
I
|
|

| -
|
Z~N(0,1) ‘ ‘ : c

I T
I

|

I

Jcu Unconditional
D, loss

Conditional

1

1

1

1

1

1

1

|

1

1

1

1
P
. 1
256x256x3 : !
' |
|

1

|

1

1

1

1

1

1

1

1

1

|

1

_____________________
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Fig. 2: The overall framework of our proposed StackGAN-v2 for the conditional image synthesis task. c is the vector of conditioning variables
which can be computed from the class label, the text description, etc.. N, and Ny are the numbers of channels of a tensor.
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o StackGAN++: Realistic Image Synthesis with Stacked
Generative Adversarial Networks e, zom)

1. Multi-scale image distributions approximation

Our StackGAN-v2 framework has a tree-like structure, which
takes a noise vector 2 ~ Pyqise as the input and has multiple
generators to produce images of different scales. The py,gise
is a prior distribution, which is usually chosen as the standard
normal distribution. The latent variables z are transformed to
hidden features layer by layer. We compute the hidden features
hi for each generator GG; by a non-linear transformation,

ho = Fo(2);  hi = Fi(hi-1,2), i =1,2,.,m -1, (7)

where h; represents hidden features for the it" branch, m is

the total number of branches, and F; are modeled as neural
networks (see Fig. 2 for illustration). In order to capture
information omitted in preceding branches, the noise vector z
is concatenated to the hidden features h;_, as the inputs of F;
for calculating h;. Based on hidden features at different layers

(ho, h1y .oy hyn—1), generators produce samples of small-to-
large scales (8¢, 81, oy Sm—1),
5; = Gi(hi), 1=0,1,..,m—1, 8)

th

where G; is the generator for the 7" branch.

Following each generator G, a discriminator D;, which
takes a real image x; or a fake sample s; as input, is trained
to classify inputs into two classes (real or fake) by minimizing
the following cross-entropy loss,

L, = ~Ezi~pyaa, [10g Di(2i)] = Esjmpg, log(1 = Di(si)], (9)

where z; is from the true image distribution pga¢q, at the ith
scale, and s; is from the model distribution pg, at the same
scale. The multiple discriminators are trained in parallel, and
each of them focuses on a single image scale.

Guided by the trained discriminators, the generators are op-
timized to jointly approximate multi-scale image distributions
(Pdatays Pdatay s -+ Pdata,, ,) by minimizing the following loss
function,

Lo=Y Lay La =—Eynpg, logDi(s)],  (10)
i=1

where Lg, is the loss function for approximating the image
distribution at the i*" scale (i.e., pgata,). During the training
process, the discriminators D; and the generators G are
alternately optimized till convergence.

The motivation of the proposed StackGAN-v2 is that, by
modeling data distributions at multiple scales, if any one of
those model distributions shares support with the real data
distribution at that scale, the overlap could provide good
gradient signal to expedite or stabilize training of the whole
network at multiple scales. For instance, approximating the
low-resolution image distribution at the first branch results in
images with basic color and structures. Then the generators at
the subsequent branches can focus on completing details for
generating higher resolution images.

Irc with reshape lllpsampling convaia

IJoiniﬂ!

Generators in a tree-like structure

|

|

i I
[ 64x64 128x128 256x256

}Ixsm, III AN, III XN, Ny
| . s ! I

T

| Gy

|

l Residual

2°N(0,1) Go

<8
14

256x256x3
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o StackGAN++: Realistic Image Synthesis with Stacked

Generative Adversarial Networks e, 2o

For the generator of our conditional StackGAN-v2, Fj and
F; are converted to take the conditioning vector ¢ as input,
such that hg = Fy(c,2) and h; = Fi(h;—1,c). For F;, the
conditioning vector c replaces the noise vector z to encourage
the generators to draw images with more details according to
the conditioning variables. Consequently, multi-scale samples
are now generated by s; = G;(h;). The objective function
of training the discriminator D; for conditional StackGAN-
v2 now consists of two terms, the unconditional loss and the
conditional loss,

L0, = ~Eximpyora, (08 Di(z)] = Espmpg, loB(1— Dils)] +

unconditional loss

—IE,',,,,,MM‘ [log Di(zi,¢)] — F.,lh.,,cl [log(1 — D;(si,¢)].

conditional loss

an

The unconditional loss determines whether the image is

real or fake while the conditional one determines whether the

image and the condition match or not. Accordingly, the loss
function for each generator G; is converted to

Lg, = —Es,npg, [log Di(si)] + —Es,~pg, [log Di(si, c)] -

conditional loss

unconditional loss

(12)
The generator G; at each scale therefore jointly approximates
unconditional and conditional image distributions. The final
loss for jointly training generators of conditional StackGAN-
v2 is computed by substituting Eq. (12) into Eq. (10).

2. Joint conditional and unconditional distribution approximation

v
Unconditional [l
loss

Conditional

Algorithm 1 GAN-CLS training algorithm with step size
«, using minibatch SGD for simplicity.
1: Input: minibatch images x, matching text ¢, mis-
matching #, number of training batch steps S

2: forn =1to S do

3:  h « ¢(t) {Encode matching text description}

4. h « ¢(f) {Encode mis-matching text description}
5: 2z~ N(0,1)Z {Draw sample of random noise}
6.
7
8

& < G(z, h) {Forward through generator}
s ¢ D(z,h) {real image, right text}
. 8y « D(z,h) {real image, wrong text}
9: sy < D(&, h) {fake image, right text}
10:  Lp « log(s,) + (log(1 = sy,) +log(1l — s5))/2
11: D« D~ adLp/dD {Update discriminator}
12: « Lg « log(sy)
13: G+ G — adLs/dG {Update generator}
14: end for
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StackGAN++: Realistic Image Synthesis with Stacked
Generative Adversarial Networks e,

This floweris  This flower has  This flower is
c and

‘This flower has ~ pink, w te Eggs fruit A street sign
Text alotof small — and yellow in yellow in color, A group of candy nuts on a stoplight
description color, and has with petals that ¢ people on skis  and meat pole in the
s that are are wavy and very clean sundinthe  served on middle of a
striped smooth livingroom ~ snow white dish day

256x256
StackGAN-v1

256x256
StackGAN-v2

Asmallbird A small yellow s small bird
The bird is Abirdwitha  This small withvarying  bird witha awhite
Text This bird isred  short and medium orange  black birdhas  shades of black crown
description N brownin  stubby with bill white body ~ a short, slightly  brown with and a short
* color,witha  yellowonits  graywingsand curvedbilland  white under the  black pointed  black wings
stubby beak body webbed fec long legs s ’
64x64

GAN-INT-CLS

128x128
GAWWN

256x256
StackGAN-v1

256x256
StackGAN-v2

Fig. 3: Example results by our StackGANs, GAWWN [33], and GAN-INT-CLS [35] conditioned on text descriptions from CUB fest set.

2017)

Model branch Gy | branch G2 branch G JCU [ inception score
StackGAN-v2 64x64 128x128 256256 yes 4.04 £ .0
StackGAN-v2-no-JCU 64x64 128x128 256256 no 377+ .04
[ StackGAN-v2-Giy removed removed 256 %256 yes 349 £ .04
[ StackGAN-v2-3G'3 removed removed three 256x256 | yes 322 & .02
StackGAN-v2-all256 256x256 256%256 256256 yes 2.89 & .02

TABLE 5: Inception scores by our StackGAN-v2 and its baseline models on CUB test set. “JCU” means using the proposed discriminator

that jointly app: and

2 |
(c) StackGAN-v2-3G'y (d) StackGAN-v2

(a) StackGAN-v2-all256
This black and white and grey bird has a black bandit marking around it’s eyes

(b) StackGAN-v2-G'y

~

- e b ¥ o iy
(e) StackGAN-v2-all256 (f) StackGAN-v2-G'y (g) StackGAN-v2-no-JCU (h) StackGAN-v2
Fig. 14: Example images generated by the StackGAN-v2 and its baseline models on LSUN bedroom (top) and CUB (bottom) datasets.
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e Text Guide Image Manipulation (TGIM)
« Text-to-Image Synthesis (T2I)

_ TGIM Negatlve text Text + Image

1- Style Encoder QO X Concat
1- GAN-CLS, INT X O Random Concat
2- StackGAN,++ X @) Random Concat
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Abstract
The bird has blue
. . R < crown and wings, and =
In this paper, we propose a way of synthesizing realistic white breast.

images directly with natural language description, which
has many useful applications, e.g. intelligent image manip- . A red bird with blue
ulation. We attempt to accomplish such synthesis: given a *Fhead has grey wings. =
source image and a target text description, our model syn-
thesizes images to meet two requirements: 1) being realistic This flower has white

4 petals with yellow =
round stamens.

while matching the target text description; 2) maintaining
other image features that are irrelevant to the text descrip-
tion. The model should be able to disentangle the seman- ! -

L N . A This flower is pink and
tic information from the two modalities (image and text), + white in color, and has=
and generate new images from the combined semantics. To no visible stamens.
achieve this, we proposed an end-to-end neural architec-
ture that leverages adversarial learning to automatically

learn implicit loss functions, which are optimized to fulfill Figure 1. Examples of flower and bird images synthesized by
the aforementioned two requirements. We have evaluated our model from given source images and target text descriptions.
our model by conducting experiments on Caltech-200 bird Both source images and target text descriptions are unseen during
dataset and Oxford-102 flower dataset, and have demon- training, demonstrating zero-shot learning ability of our model.
strated that our model is capable of synthesizing realistic

images that match the given descriptions, while still main- =06 e®)

tain other features of original images.

Two sub problems:
1. Realistic image
2. Preserve & change ‘ asnerator

Figure 2. Network architecture of our proposed model. It consists of a generator network and a discriminator network. The generator has
an encoder-decod i and izes images conditioned on both images and text embeddings. The discriminator performs the 27/61
i ive task conditioned on text i

Discriminator
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e Semantic Image Synthesis via Adversarial Learning acw, 2

A. Network architecture

X =G(x, @(t)

A bird with red i)ead and breast.

@(t)
D (%, (1))

bird with red head and breast.

@(t)

Residual Transformation Unit

Encoder Decoder Discriminator

Gene'rator

Figure 2. Network architecture of our proposed model. It consists of a generator network and a discriminator network. The generator has
an encoder-decoder architecture and synthesizes images conditioned on both images and text embeddings. The discriminator performs the
discriminative task conditioned on text embeddings.
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e Semantic Image Synthesis via Adversarial Learning acw, 2

Text encoder; VSE

S (1.
L7700 TS "4,’ o -~
’ I/O Al
/ M ’ N
' ot N \
& Cyo .
Cqo “ ' ) /e
i\ 0'50 e OCAC
\ \ ~ - !
A \ /
\ N /
RS °_o-
"8 ¢y
(b)

Figure 1: An illustration of typical positive pairs and the nearest negative samples. Here assume
similarity score is the negative distance. Filled circles show a positive pair (i,c), while empty circles
are negative samples for the query i. The dashed circles on the two sides are drawn at the same radii.
Notice that the hardest negative sample ¢’ is closer to i in (a). Assuming a zero margin, (b) has a higher
loss with the SH loss compared to (a). The MH loss assigns a higher loss to (a).

min ) | émaw{o, o = s(¢(a), ¢(1)) + s(9(2), (1))

+ Egmam{& o = 8(6(x), (1)) + s(d(zx), (1))}
@
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e Semantic Image Synthesis via Adversarial Learning acw, 2

B. Adaptive loss for semantic image synthesis

Algorithm 1 GAN-CLS training algorithm with step size

«, using minibatch SGD for simplicity.

In our approach, we feed the discriminator D with three
types of input pairs, and the outputs of discriminator D are
the independent probabilities of these types:

o s« D(z,(t)) for real image with matching text;
e s, < D(x,(t)) for real image with mismatching

text;
e 5. < D(Z,p(t)) for synthesized image with seman- 7

tically relevant text.

2:
3:
4.
5:
6:

1: Input: minibatch images z, matching text ¢, mis-
matching £, number of training batch steps S
forn =1to S do

h « ¢(t) {Encode matching text description}

h (t) {Encode mis-matching text description}
z ~ N(0,1)Z {Draw sample of random noise}

& < G(z, h) {Forward through generator}

sy < D(z, h) {real image, right text}

Sw < D(z, h) {real image, wrong text}

9: sy « D(&, h) {fake image, right text}
where + and — denote positive and negative examples re- 100 Lp « log(s;) + (log(1 — sy) + log(1 — sy))/2
spectively. 11: D« D — adLp/0D {Update discriminator}
The term s, proposed by Reed et al. [29], enables the 122 Lg < log(sy)
discriminator to generate stronger image / text matching ii gf‘_ G — adLs/0G {Update generator}
: end for

signal, which makes the generator G able to synthesize re-

alistic images that better match the text descriptions. G
synthesizes images via & < G(z,¢(t)) and is optimized
adversarially with D.
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Semantic Image Synthesis via Adversarial Learning ac, wm)

B. Adaptive loss for semantic image synthesis

In our approach, we feed the discriminator D with three
types of input pairs, and the outputs of discriminator D are
the independent probabilities of these types:

o s« D(z,(t)) for real image with matching text;

e s, < D(x,(t)) for real image with mismatching
text;

e s, « D(Z,(t)) for synthesized image with seman-
tically relevant text.

where + and — denote positive and negative examples re-
spectively.

The term s_,, proposed by Reed et al. [29], enables the
discriminator to generate stronger image / text matching
signal, which makes the generator G able to synthesize re-
alistic images that better match the text descriptions. G
synthesizes images via & < G(z,¢(t)) and is optimized
adversarially with D.

LD = E(zt)npgar, l0gD(@, p(t))
+E (4 iy opanea 109(1 = D(@, 0(#)))
+ E (g 5)mpaaia 109(1 = D(G(z, (1)), ¢(2))))

_ 3
: 3)
£6 = By ypanrs 09(D(C(z, 0(0)), £(0))))

where ¢ denotes matching text, £ denotes mismatching
text, ¢ denotes semantically relevant text. The genera-
tor G(z, ¢(t)) captures conditional generative distribution
pc(Z|x,t), and the loss functions encourage the generator
to fit the distribution of real data pgqq (2, t).

31/61



Semantic Image Synthesis via Adversarial Learning ac, wm)

Baseline method Our method (without VGG) Our method (with VGG)

e £, ¢ SWIE £« S WS Aith_

This small bird has a blue crown
and white belly.

This small yellow bird has grey
wings, and a black bill.

This particular bird with ared head
and breast and features grey wings. »

This black bird has no other colors
with a short bill.

An orange bird with green wings
and blue head.

Ablack bird with ared head.

Asmall brown bird with a brown
crown has a white belly.

Figure 4. Zero-shot results of the baseline method and our method with and without pretrained VGG encoder on Caltech-200 bird dataset.

32/61

=)
©
=
o
s}
=
[}
=
]
=1
=
B
5
=
=
=
<
o3
=]
=
a
g
=
=
o
=]
&
3
=)
=
©
=
©
i
S
2
©
z
o
e
«
-
=
a
S
o



F-)
©
&)
@
9
c
@
=
7]
£
=

Copyright © 2019 Natural Language Processing & Ar

Semantic Image Synthesis via Adversarial Learning ac, wm)

" Ablack bird.
A bird with red body has yellowwings and a blue head.

Thisisared bird.

A bird with yellow body and grey stripes on wings.
This dark blue bird has a black beak.

_ Thisbird has yellow breast andgrey on its wings. " g

Figure 6. Zero-shot results of interpolation between two source Figure 7. Zero-shot results of interpolation between two target text
images with the same target text description. The images pointed descriptions for the same source image. The images on the left-
by arrows are the source images. hand side of sentences are the source images.

The bird is blue and red in
color with a black beak.

A green bird with a
brown head.

Figure 8. Zero-shot results from same source image and target text
description for showing variety.

33/61



e Text Guide Image Manipulation (TGIM)
« Text-to-Image Synthesis (T2I)

_ TGIM Negatlve text Text + Image

1 - Style Encoder Concat
1- GAN-CLS, INT X O Random Concat
2 - StackGAN,++ X O Random Concat

3 - SISGAN O X Random Concat

/' Copyright © 2019 Natural Language Processing & Artificial Intelligence Lab
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Text Guided Image Manipulation
Text to Image Synthesis

- Text encoder: Char-CNN-RNN, VSE
- Unconditional Loss & Conditioning Augmentation

$,=Natura| Language Processing - (image, wrong text), (image, relative text)
& Artificial Intelligence

-> Image & Language= Et%& concat

-> Text= Ht& Sentence level

-> SpatialO|L} word &2 channe101| st e BN &
-> Multimodal®j| CHSF alignment 5=

i

* 1) Generative adversarial text to image synthesis (ICML, 2016)

e 2) StackGAN (ICCV, 2017)

e 3) StackGAN++ (TPAMI, 2017)

e 4) Semantic Image Synthesis via Adversarial Learning (ICCV, 2017)
* 5) AttnGAN (CVPR, 2018)

e 6) TaGAN (NIPS, 2018)
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e AttnGAN: Fine-Grained Text to Image Generation

with Attentional Generative Adversarial Network (s, 2m

Abstract

In this paper, we propose an Attentional Generative Ad-
versarial Network (AttnGAN) that allows attention-driven,
multi-stage refinement for fine-grained text-to-image gener-
ation. With a novel attentional generative network, the At-
tnGAN can synthesize fine-grained details at different sub-
regions of the image by paying attentions to the relevant
words in the natural language description. In addition, a
deep attentional multimodal similarity model is proposed to
compute a fine-grained image-text matching loss for train-
ing the generator. The proposed AttnGAN significantly out-
performs the previous state of the art, boosting the best re-
ported inception score by 14.14% on the CUB dataset and
170.25% on the more challenging COCO dataset. A de-
tailed analysis is also performed by visualizing the atten-
tion layers of the AttnGAN. It for the first time shows that
the layered attentional GAN is able to automatically select
the condition at the word level for generating different parts
of the image.

this bird is red with white and has a very short beak

10:short  3:red 11:beak 9:very 8:a

3:red 5:white 1:bird 10:short 0:this

Figure 1. Example results of the proposed AttnGAN. The first row
gives the low-to-high resolution images generated by Go, G1 and
G2 of the AttnGAN; the second and third row shows the top-5
most attended words by F{**" and F5**™ of the AttnGAN, re-
spectively. Here, images of G and G are bilinearly upsampled
to have the same size as that of G2 for better visualization.
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e AttnGAN: Fine-Grained Text to Image Generation
with Attentional Generative Adversarial Network (e, s

I Raesidual I FCwith reshape I Upsampling { i I Jeining I Convad

word Local image
features features
—llli

sentence
Text eature
Encoder

A

v Image
Encoder

256x%256x3

F,
IIIIM

this bird Is red with
white and has a
very short beak

Figure 2. The architecture of the proposed AttnGAN. Each attention model automatically retrieves the conditions (i.e., the most relevant
word vectors) for generating different sub-regions of the image; the DAMSM provides the fine-grained image-text matching loss for the
generative network.
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AttnGAN: Fine-Grained Text to Image Generation
with Attentional Generative Adversarial Network (. zm)

A. Attention Generative Network

|

|
|
|
|
|
|
|
at/n |
|

|

|

|

r:-

|

|

|

|

|

|

|

To generate realistic images with multiple levels (i.e.,
sentence level and word level) of conditions, the final objec-
tive function of the attentional generative network is defined
as

m—1
L=Lg+Npamsyu, where Lo =Y Lg,. ()
DA~ i=0

Here, A is a hyperparameter to balance the two terms of
Eq. (3). The first term is the GAN loss that jointly approx-
imates conditional and unconditional distributions [37]. At
the i" stage of the AttnGAN, the generator G; has a cor-
responding discriminator D;. The adversarial loss for G; is
defined as

1 . 1 ~ M
Lg, = _QEiiNPGi (log(D; (&;)] _EE&iN"Gi [log(D; (&4, €)],

unconditional loss conditional loss (4)
where the unconditional loss determines whether the image
is real or fake while the conditional loss determines whether
the image and the sentence match or not.

Alternately to the training of G;, each discriminator D;
is trained to classify the input into the class of real or fake
by minimizing the cross-entropy loss defined by

1 1 R
£0; = =3 Buimpgara, 08 Di(@)] = 3Es;mng, log(1 = Di(@)] +

unconditional loss

1
— ]Exl.N,,dMui [log Di(zi,€)] — ElEgiN,,Gi [log(1 — D;i(&:,@)],

2

conditional loss
)
where z; is from the true image distribution pgq¢q; at the
h scale, and #; is from the model distribution pag, at the
same scale. Discriminators of the AttnGAN are structurally
disjoint, so they can be trained in parallel and each of them
focuses on a single image scale.
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e AttnGAN: Fine-Grained Text to Image Generation
with Attentional Generative Adversarial Network (e, s

B. Deep Attentional Multimodal Similarity Model (DAMSM)

I Rasidual I FC with reshape I Upsamping

|
word / Local image
features ! features
=l —— - = 111
\ | .
F, 1
Z~N(0,1) N a2 : t
sentence !
Text eature Ly F Image
) I o el ¢ | En r
Encoder £~ I s
‘ ' | 256x256x3
|

___________________________________

Figure 2. The architecture of the proposed AttnGAN. Each attention model automatically retrieves the conditions (i.e., the most relevant
word vectors) for generating different sub-regions of the image; the DAMSM provides the fine-grained image-text matching loss for the
generative network.

this bird Is red with
white and has a
very short beak
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e AttnGAN: Fine-Grained Text to Image Generation
with Attentional Generative Adversarial Network (s, 2m

B. Deep Attentional Multimodal Similarity Model (DAMSM)

The text encoder is a bi-directional Long Short-Term The image encoder is a Convolutional Neural Network
Memory (LSTM) [25] that extracts semantic vectors from (CNN) that maps images to semantic vectors. The inter-
the text description. In the bi-directional LSTM, each word mediate layers of the CNN learn local features of different

. . . sub-regions of the image, while the later layers learn global
corresponds to two hidden states, one for each direction. features of the image. More specifically, our image en-

Thus, we concatenate its two hidden states to represent the coder is built upon the Inception-v3 model [26] pretrained

semantic meaning of a word. The feature matrix of all on ImageNet [22]. We first rescale the input image to be

words is indicated by e € RP*T_ Its it" column e; is the 299 %299 pixels. And then, we extract the local feature ma-
. . . . . i

feature vector for the it" word. D is the dimension of the trix f € R708%259 (reshaped from 768x17x17) from the

word vector and T is the number of words. Meanwhile, the mized_Ge” layer of Inception-v3. Bach,column of f is the
feature vector of a sub-region of the image. 768 is the di-

last hidden states of the bi-directional LSTM are concate- mension of the local feature vector, and 289 is the number

nated to be the global sentence vector, denoted by € € R”. of sub-regions in the image. Meanwhile, the global feature
vector f € R2048 js extracted from the last average pooling
layer of Inception-v3. Finally, we convert the image fea-
tures to a common semantic space of text features by adding
a perceptron layer:

v=Wf, EZW?v (6)

where v € RP*289 and its ** column v; is the visual fea-
ture vector for the i** sub-region of the image; and 7 € RP
is the global vector for the whole image. D is the dimension
of the multimodal (i.e., image and text modalities) feature
space. For efficiency, all parameters in layers built from the
Inception-v3 model are fixed, and the parameters in newly
added layers are jointly learned with the rest of the net-
work.
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e AttnGAN: Fine-Grained Text to Image Generation
with Attentional Generative Adversarial Network (s, 2m

B. Deep Attentional Multimodal Similarity Model (DAMSM)

The attention-driven image-text matching score is
designed to measure the matching of an image-sentence pair
based on an attention model between the image and the text.

We first calculate the similarity matrix for all possible
pairs of words in the sentence and sub-regions in the image
by

s=el v, (@)

where s € RT*%9 and s, ; is the dot-product similarity

between the i*” word of the sentence and the ;" sub-region
of the image. We find that it is beneficial to normalize the
similarity matrix as follows

exp(si,;)

P VIR
S ko exp(sk.;)
(a0

®)

Sij =

Then, we build an attention model to compute a region-
context vector for each word (query). The region-context
vector ¢; is a dynamic representation of the image’s sub-
regions related to the i** word of the sentence. It is com-
puted as the weighted sum over all regional visual vectors,
ie.,

288

€ e
c = Za]-v]-, where o; = %;cp(#. )
=0 Zk=0 exp('ylsi,k)
NN~

Here, ; is a factor that determines how much attention is
paid to features of its relevant sub-regions when computing
the region-context vector for a word.

Finally, we define the relevance between the ith word
and the image using the cosine similarity between c; and e;,
i.e., R(ci,e;) = (cFei)/(||cillllei]])- Inspired by the mini-
mum classification error formulation in speech recognition
(see, e.g., [11, £]), the attention-driven image-text match-
ing score between the entire image (Q)) and the whole text
description (D) is defined as

The DAMSM loss is designed to learn the attention
model in a semi-supervised manner, in which the only su-
pervision is the matching between entire images and whole
sentences (a sequence of words). Similar to [4, 9], for a
batch of image-sentence pairs {(Q;, D;)}};, the posterior
probability of sentence D; being matching with image Q;
is computed as

exp(13R(Qi, Di))

b
Y exp(13R(Qs, D;))
AN~
where 3 is a smoothing factor determined by experiments.
In this batch of sentences, only D; matches the image Q;,
and treat all other M — 1 sentences as mismatching de-
scriptions. Following [4, 9], we define the loss function as
the negative log posterior probability that the images are
matched with their corresponding text descriptions (ground
truth), i.e.,

P(Di|Q:) = an

M
Ly == log P(D;|Qy),

-1 3 Symmetrically, we also minimize
R(Q,D) =log (Y exp(v2R(ci,e:))) ™,
i=1 N\ANAL

where 2 is a factor that determines how much to mag-
nify the importance of the most relevant word-to-region-
context pair. When 72 — oo, R(Q, D) approximates to
max’ 5! R(ci, e:).

(12)

=1

where ‘w’ stands for “word”.

M
Ly = = log P(Q:|Dy), (13)

=1

Finally, the DAMSM loss is defined as

Lpamsm =LY + Ly + L] + L5. (14)



e AttnGAN: Fine-Grained Text to Image Generation
with Attentional Generative Adversarial Network (e, s

this bird has wings that are black and has a white belly

Dataset | GAN-INT-CLS [20] | GAWWN [1#] | StackGAN [36] | StackGAN-v2 [37] | PPGN [16] | Our AtnGAN
; CUB 2.88 4 .04 3.62 £ .07 3.70 £ .04 3.84 £ .06 / 4.36 + .03
e COCO 7.88 £ .07 / 8.45 £ .03 / 9.58 + .21 25.89 + .47

this bird has wings that are red and has a yellow be[]y Table 3. Inception scores by state-of-the-art GAN models [20, 1%, 36, 37, 16] and our AttnGAN on CUB and COCO test sets.

the bird has a yellow crown and a black eyering that is round this bird has a green crown black primaries and a white belly
- o v

L

"

1: mrd 4:yellow (] the 12: mund 11:is 1:bird 0:this 2:has 11:belly 10:white

Figure 5. Example results of our AttnGAN model trained on CUB
Whlle Changlng some most attended words in the text descriptions' 1:bird 4:yellow 0:the 8: b]nck 12:round 6:black 4:green 10:white 0:this 1:bird

ared double . .
a fluffy black  decker bus a stop sign a stop sign
i i i is floating on  is flying in

cat floating on is floating on

IOp ofal ake top o f a lake top o £ a lake the blue Sky a photo of a homemade swirly pasta with broccoli carrots and onions a fruit stand display with bananas and kiwi
= 3 0:a 7:with 5:swirly 8:broccoli  10:and £ 10 3 1:fruit 7:kiwi 5:bananas
= - -
jou
Figure 6. 256 X256 images generated from descriptions of novel ApT

scenarios using the AttnGAN model trained on COCO’ (Interme_ 8:broccoli  6:pasta ~ 9urml S:swirly 8 S:bananas  1:fruit 7:kiwi
diate results are given in the supplementary material.)
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Figure 4. Intermediate results of our AtmGAN on CUB (top) and COCO (bottom) test sets. In each block, the first row gives 64 x 64 images
by Go, 128128 images by G and 256256 images by G of the AUnGAN; the second and third row shows the top-5 most atiended

words by F{'“" and F**" of the AUnGAN, respectively. Refer to the supplementary material for more examples. 44/61




Copyright © 2019 Natural Language Processing & Artificial Intelligence Lab

e Text Guide Image Manipulation (TGIM)
« Text-to-Image Synthesis (T2I)

_ TGIM Negatlve text Text + Image

1 - Style Encoder
1 - GAN-CLS, INT
2 - StackGAN,++
3 - SISGAN

4 - AttnGAN

X
X
O
X

OXO0OO0X

Random
Random
Random

Random
(constrastive)

Concat
Concat
Concat
Concat
Attention, Concat
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Text-Adaptive Generative Adversarial Networks:

Manipulating Images with Natural Language s, »:w
Abstract

This paper addresses the problem of manipulating images using natural language
description. Our task aims to semantically modify visual attributes of an object in an
image according to the text describing the new visual appearance. Although existing . o .
methods synthesize images having new attributes, they do not fully preserve text- Same as SISGAN (From origina 1 lmaQE)
irrelevant contents of the original image. In this paper, we propose the text-adaptive
generative adversarial network (TAGAN) to generate semantically manipulated Pre S? FV? & . chan ge
images while preserving text-irrelevant contents. The key to our method is the Realistic 1mage
text-adaptive discriminator that creates word-level local discriminators according to Text ada D tive. word-level
J
Modifying color or textual

input text to classify fine-grained attributes independently. With this discriminator,
the generator learns to generate images where only regions that correspond to the
given text are modified. Experimental results show that our method outperforms
existing methods on CUB and Oxford-102 datasets, and our results were mostly
preferred on a user study. Extensive analysis shows that our method is able to
effectively disentangle visual attributes and produce pleasing outputs.

This particular bird with a red head and breast ‘!. \ \ \
and features grey wings.

This small bird has a blue crown and white *\
belly.

Original [11] _____ [15) ======Oues..______
Figure 1: Examples of image manipulation using natural language description. Ex-lgtll-‘l-g-ﬂmhedﬁ --------------------- 3 @ ( S lS‘GM/)
produce reasonable results, but fail to preserve text-irrelevant contents such as the background of ~~"77===
the original image. In comparison, our method accurately manipulates images according to the text [ ﬁ (%IQ er‘(.&le

while preserving text-irrelevant contents.
46/61
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« Text-Adaptive Generative Adversarial Networks:
Manipulating Images with Natural Language s, z:m)

Generator iscri
= Unconditional loss Image
- Conditional loss Encoder
Residual
Encoder Blocks Decoder Encoder Real/Fake GAP
t
Text-Adaptive
Discriminator
Text
Text Text Encoder Discriminator
Encoder Encoder i+1
(a) GAN structure (b) Text-adaptive discriminator

Figure 2: The proposed GAN structure. (a) shows the overall GAN architecture and (b) depicts our
text-adaptive discriminator. In (b), the attention and the layer-wise weight are omitted for simplicity.
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Text-Adaptive Generative Adversarial Networks:
Manipulating Images with Natural Language s, »:w

Let x, t, t denote an image, a positive text where the description matches the image, and a negative
text that does not correctly describe the image, respectively. leen an image x and a target negative
text £, our task is to semantically manipulate x according to t so that the visual attributes of the
manipulated image ¥ match the description of t while preserving other information. We use GAN as
our framework, in which the generator is trained to produce y = G(x, t). Similar to text-to-image
GANSs [11,115], we train our GAN to generate a realistic image that matches the conditional text
semantically. In the following, we describe the TAGAN in detail.

48/61
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« Text-Adaptive Generative Adversarial Networks:
Manipulating Images with Natural Language s, »:w

A. Generator

Generator The generator is an encoder-decoder network as shown in Fig. (aﬂ It first encodes an
input image to a feature representation, then transforms it to a semantically manipulated represen-
tation according to the features of the given conditional text. For the text representation, we use a
bidirectional RNN to encode the whole text. Unlike existing works [11}15], we train the RNN from
scratch, without pretraining. Additionally, we adopt the conditioning augmentation method [12] for
smooth text representation and the diversity of generated outputs. As shown in Fig. 2](a), manipulated
contents are generated through several residual blocks with a skip connection. However, this process

may generate a new background and other contents that are not described in the text. Therefore,
we use the reconstruction loss [27] when a positive text is given, which enforces the generator to
reconstruct the text-irrelevant contents from the input image instead of generating new contents:

Lyec = ”X - G(X, t)” n

However, learning invariant representation is still difficult unless the discriminator provides useful
feedback for disentangling visual attributes. To cope with it, we propose a text-adaptive discriminator.
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« Text-Adaptive Generative Adversarial Networks:

Manipulating Images with Natural Language s, z:m)

B. Text-adaptive discriminator

Fig. [Z] (b) shows the structure of the text-adaptive discriminator. Similar to the generator, the
discriminator is trained with its own text encoder. For each word vector w;, i-th output from the text

————

T (V)= 0 (W(ws) v FBlws), @

where W (w;) and b(w;) are }Héii;gght and the bias dependent on w;. v is an 1D image vector
computed by applying global average pooling to the feature map of the image encoder.

With the local discriminators, the'final classification decision is made by adding word-level attentions
to reduce the impact of less important words to the final score. Our attention is a softmax values
across 1" words, which is computed by:

\ exp(u”w;)

\\ Qi = EEj;;;Ei;E;]anVi)’

Ry

3

where u is a temporal average of vfr‘,«\Thc final score is computed according to the following

formulation: ’ﬂ_%% .\\ v
D(x,t) = [T, W) @
i=1 e
We additionally consider multi-scale image features to make some attribute detectors to focus on small-

scale features and others to focus on large-scale features. Therefore, our conditional discriminator is
rewritten as:

T
D(x,t) = [[1D_ Bijfwei(vi)l™, ®)
i=1 j S

S
where v ; is the image vector of j-th layer, and f3;; is a softmax weight that determines the importance
of the layer j for each word w;.

Image
Encoder

———
——

Discriminator

(b) Text-adaptive discriminator
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, » Text-Adaptive Generative Adversarial Networks:
Manipulating Images with Natural Language s, »:w

C. Objectives

GAN objective The final GAN objective consists of unconditional adversarial losses for D(x),
text-conditional losses for D(x, t), and a reconstruction loss as shown in Fig. @ The discriminator
has one image encoder and two branches of classifier on the top of the encoder to compute both the
unconditional and the conditional losses. Our network is trained by alternatively minimizing both the
discriminator and the generator objectives described as:

Lp=E [log D(x) 4+ A1 (log D(x,t) + log (1 — D(x, t)))]

xvtye'\'pdata (6)
+ By opua, 108 (1 = D(G(x, 1)))],
Le =Eytp,.,.[log D(x) + A1 log D(G(x,t),t)] + Ao Lyec, )

where \; and A\, control the importance of additional losses, and £ is randomly sampled from a dataset
regardless of x. Note that we do not penalize generated outputs using the conditional discriminator
in Eq. (6) due to instability of training. In our experiment, our objective was enough to produce real
images having manipulated attributes.
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« Text-Adaptive Generative Adversarial Networks:
Manipulating Images with Natural Language s, z:m)

Table 1: Quantitative comparison. Accuracy and Naturalness were evaluated by users, and the values
indicate the average ranking. Ly reconstruction error was additionally compared. This is a black bird with gray This flower has petals that are
and white wings and a bright white and has patches of yellow.
yellow belly and chest.

CUB Oxford-102

Method Accuracy Naturalness Ly error  Accuracy Naturalness Ly error

SISGAN [I35] 2.33 2.34 0.30 2.67 2.28 0.29 Original
AttnGAN [13] 2.19 2.11 0.25 221 2.10 0.32

Ours 1.49 1.56 0.11 1.52 1.62 0.11

SISGAN [15]
Original

AttnGAN [13]

o “. B

This pink flower has long and oval petals and a large yellow stamen. __T

This bird has wings that are blue
and has a white belly.

A small bird with white base and
black stripes throughout its belly,
head, and feathers.

Original Figure 4: Qualitative comparison of three methods. In most cases, our method outperforms baseline

methods qualitatively. The rightmost column shows a failure case using our method.

The petals of the flower have yellow
and red stripes. Left: A small brightly colored yellow bird with a black crown.

Right: This is a black and white shaded bird with a very small beak.

This flower has petals of pink and
white color with yellow stamens.

Figure 3: Qualitative results of our method on CUB and Oxford-102 datasets.

Figure 7: Sentence interpolation results. Our generator smoothly generates new visual attributes
without loosing original image. .
\JLI61
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e Text Guide Image Manipulation (TGIM)
« Text-to-Image Synthesis (T2I)

_ TGIM Negatlve text Text + Image

1 - Style Encoder
1 - GAN-CLS, INT
2 - StackGAN,++
3 - SISGAN

4 - AttnGAN

5 - TaGAN

X O X XO

O

OXO0OO0X

X

Random
Random
Random

Random
(constrastive)

Random

Concat
Concat
Concat
Concat
Attention, Concat

Attention, Concat
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Text Guided Image Manipulation
Text to Image Synthesis

- Word & Sentence level ZO0| &&
- Various Loss (DAMSM, Reconstruction)
fé:’e Natural Language Processing - word-region, word-layer wise attention
<= & Artificial Intelligence
-> Multimodal®j| CHSt alignmentE & O LT EFISHS
-> oA 3t 0§ 43| negative sample®f| CHSH Random
-> Text embedding& concatC 2 HH=

» 1) Generative adversarial text to image synthesis (ICML, 2016)

e 2) StackGAN (ICCV, 2017)

* 3) StackGAN++ (TPAMI, 2017)

e 4) Semantic Image Synthesis via Adversarial Learning (ICCV, 2017)
e 5) AttnGAN (CVPR, 2018)

e 6) TaGAN (NIPS, 2018)
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What we are conside@g deeply--

Torgeh

\_/—\ composition feature

T . reference
gated feature | -

reference image

uonisodwod

add red cylinder

modification text LSt

Training
i loss
residual feature

~
=

Image feature
space in 2D

target feature

target image

‘white signature print t-shirt!
white logo print t-shirt

“change logo to signature”

have no buckle
or wedge heel

are red with a
woven top
pattern

change is blue with

state to —» checkered

melted and a dark
gray tie

change =

stateto —pp is grey with

ancient black design

" Ablack bird.

Sg\,‘b/\ﬁ? , Ca.‘r}lon

The bird has blue
+ crown and wings, and =
white breast.

A red bird with blue
+ head has grey wings.

This flower has white
4 petals with yellow =
round stamens.

This flower is pink and
< white in color, and has=
no visible stamens.

A blrd with red body has yellowwings and a blue head.

A bird with yellow body and grey stripes on wings.
This dark blue bird has a black beak.

ﬂil!l!l!lﬂﬂ
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What we are considering deeply -

« Unpaired dataset

L, — + — I, A I In
Ty S Sz 57
Task specific dataset for supervision Common Image, caption pairs
I, T,T) LS)

« Common space

« Text space -> Image space
« Image space -> Text space
»  Visual-linguistic space

» Joint space

I Source Image

*S: Source Text (caption)
*(L,S): Normal pairs

*T: Target Text

oI Target Image

*(ILT) ->I'; What we want to Learn

*T is not negative text
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- Unpaired dataset -> Unsupervised Learning, Self-supervised Learning
Representation learning

° ViSiOﬂ € Vision
q . Eé Output
« Pretext task, Contrastive learning g v
«  MoCo, SIMCLR, -, BYOL, SWAV, - Pos Feat 5 Moduthy
A woman f Word Emb ’NL X OUtPUt
riding a bike E’é Language
wiihh: :t:% ina : é Output
* NL P ldx Emb Language Encoder o Cross-Modality Encoder
- Pl (e Ueaa s « Two-stream; Lxmert (2019 EMNLP)
» Bert, GPT, -+, ELECTRA, T5,-
Contrastive Loss Masked Token Loss

Fawres (O O O O OO0 00 oo o o O

Network Multi-Layer Transformers

« Visual-linguistic representation mbeddings 9 9 Y Oy e e S o o o e o
+  Two-Stream: Lxmert, ViLBERT,-- R =1 [“ﬂ ISEPIJ
« One-Stream: Uniter, Univer-VL, Word Tokens Object Tags Region Features
VL-BERT, Oscar, - Modatity R \mage -
Dictionary Language Image

e One-stream: Oscar (2020 ECCV)
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Unpaired dataset -> Unsupervised Learning, Self-supervised Learning
Representation learning

. train wt. .
’ t&auch =
S Y- ;w ® | = image feature,
@, s % “thmn% m, S = text feature
@ o PP *mﬂ#e e V = visual-linguistic feature
.Mbrﬂ & wpha” Sieer® - .
‘ % zebra :; L:';ge 2
(a) OSCAR SZ
« Visual-linguistic space
« Image-Text Semantic Alignment ;
1
S, o T2:(S) -1

e TGIM: (I,,S,) > 1

Rol Feat Rol-chlurc
; Regression . Vl — VZ or VZ — Vl =T
t ObjectRel
%P_l,‘ Fcoder & Classification i Sl — SZ or SZ - Sl = 11 - IZ or 12 - 11
ostedt Cross teh? “ross-Modali ; i ~ i
w o Modaky e e saury Matihing & O : i text semantic gap = Image semantic gap
.[ﬂg]wn ..... 7 ord Em| , ............. - :
nE % éﬁ*i St Yt © UnS) =1, S5y) =T
o % ok | ’ Texto| M9 Interpolation
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