

Automatic Post Editing in NMT

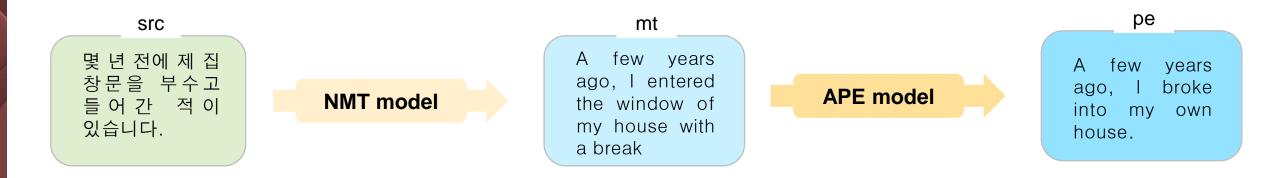
2021/02/03

문현석

Contents

- APE
- 기존 APE의 접근방법
- 현재 APE SOTA모델
- 앞으로의 연구 계획

APE: 기계번역 사후 교정



- 번역 결과문의 오류를 수정하기 위한 또 하나의 번역기
- 사람의 직접적인 수정작업 없이 더 뛰어난 번역결과물 생성
- 일반적인 도메인에서 생성된 번역문을 특정 도메인에 적합한 번역문으로 변경 (domain adaptation)

NMT: (src, tgt)로 이루어진 병렬 코퍼스를 통해 학습

src: source문장(입력)

tgt: target문장

src

몇 년 전에 제 집 창문을 부수고 들어간 적이 있습니다.

NMT model

A few years ago, I broke into my own house.

tgt

APE: (src, mt, pe)로 이루어진 코퍼스를 통해 학습

src

몇 년 전에 제 집 창문을 부수고 들어간 적이 있습니다.

mt

A few years ago, I entered the window of my house with a break

APE model

src: source문장(입력)

mt: machine translation

pe: post edit

pe

A few years ago, I broke into my own house.

• APE연구 발전단계



Convolution to Convolution model (2017)

Transformer based model (2018)

사전학습된 Bert를 이용한 model (2019)

Transformer 번역 모델을 기반으로 transfer learning을 진행한 APE model (2020)

- 번역 된 문장에 추가적인 처리를 가하여 더 좋은 문장을 만들기
- (src, mt, pe) triplet으로 구성된 Dataset이 요구됨
- TER (Translation Error Rate), BLEU score로 성능 평가
 - * TER = $\frac{\# of \ required \ edits}{average \# of \ tokens \ in \ pe}$. mt에 있는 token들 중, 교정이 필요한 token의 비율
- WMT2020 En-De, En-Zh
 일본어 한국어 APE데이터는 있지만, 한국어가 source문장인 데이터는 존재하지 않음

WMT2019 APE En-De

	TER	BLEU	TER	BLEU	TER	BLEU
ID	(pe)	(pe)	(ref)	(ref)	(pe+ref)	(pe+ref)
UNBABEL Primary	16.06*	75.96	41.66	44.95	15.58	78.1
POSTECH Primary	16.11*	76.22	42.04	44.57	15.68	78.08
POSTECH Contrastive (var2Ens8)	16.13*	76.21	42.09	44.53	15.73	78.05
USAAR_DFKI Primary	16.15*	75.75	41.84	44.65	15.69	77.84
POSTECH Contrastive (top1Ens4)	16.17*	76.15	42.09	44.52	15.74	78.01
UNBABEL Contrastive (2)	16.21*	75.7	41.59	45.08	15.72	77.98
UNBABEL Contrastive (1)	16.24*	75.7	41.62	45.01	15.76	77.97
FBK Primary	16.37*	75.71	42.18	44.39	15.90	77.54
FBK Contrastive	16.61†	75.28	42.12	44.49	16.1	77.43
UDS Primary	16.77†	75.03	42.64	43.78	16.34	76.83
IC_USFD Contrastive	16.78†	74.88	42.45	44.01	16.31	76.82
UDS Contrastive (Gaus)	16.79†	75.03	42.55	44.0	16.33	76.87
UDS Contrastive (Uni)	16.80†	75.03	42.66	43.79	16.37	76.85
IC_USFD Primary	16.84†	74.8†	42.58	43.86	16.41	76.68
Baseline	16.84	74.73	42.24	44.2	16.27	76.83
ADAPT_DCU Contrastive (SMT)	17.07	74.3	42.40	44.14	16.54	76.36
ADAPT_DCU Primary	17.29	74.29	42.41	44.09	16.81	76.51
USAAR_DFKI Contrastive	17.31	73.97	42.45	43.71	16.87	76.06
ADAPT_DCU Contrastive (LEN)	17.41	74.01	42.44	44.01	16.91	76.2

WMT2020 APE En-De

0.		TER	BLEU
en-de	HW-TSC_DIRECT_CONTRASTIVE.pe	20.21	66.89
	HW-TSC_CONCAT_PRIMARY.pe	20.52	66.16
	MinD-mem_enc_dec_post-CONTRASTIVE	26.99	55.77
	POSTECH-ETRI_XLM-Top4Ens_CONTRASTIVE	27.02	56.37
	MinD-mem_enc_dec-PRIMARY	27.03	55.58
	POSTECH-ETRI_XLM-Top3Ens_PRIMARY	27.37	55.83
	BeringLab_model1_PRIMARY	27.61	54.71
	BeringLab_model2_CONTRASTIVE	27.96	54.60
	POSTECH_TERNoise-nFold-Ens8_CONTRASTIVE	28.22	54.51
	POSTECH_TERNoise-Ops-Ens8_PRIMARY	28.41	54.22
	Baseline	31.56	50.21
	KAISTxPAPAGO_EMT_PRIMARY	32.00	49.21

• APE 성능개선을 위한 연구 방향

사전학습 된 언어모델 기반 Transfer Learning

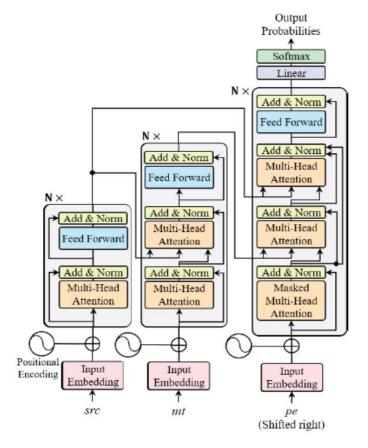
Data Augmentation

Quality Estimation과의 융합

Embedding 구성 변경

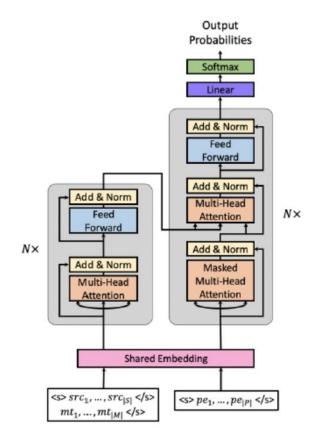
Input of APE

src와 mt를 처리하는 encoder를 따로 구성



Transformer-based Automatic Post-Editing Model with Joint Encoder and Multi-source Attention of Decoder (ACL 2019)

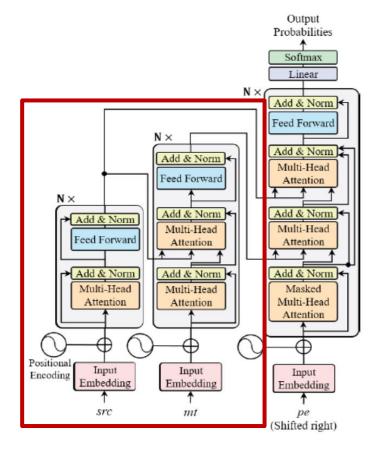
src와 mt를 한 문장으로 연결하여 입력을 구성



Cross-Lingual Transformers for Neural Automatic Post- Editing (WMT2020)

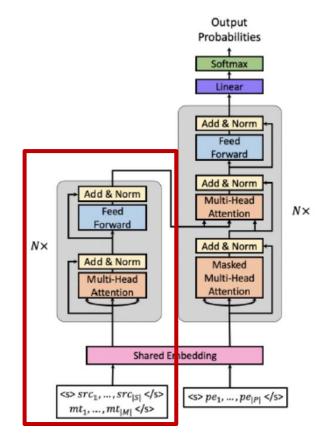
Input of APE

src와 mt를 처리하는 encoder를 따로 구성



Transformer-based Automatic Post-Editing Model with Joint Encoder and Multi-source Attention of Decoder (ACL 2019)

src와 mt를 한 문장으로 연결하여 입력을 구성



Cross-Lingual Transformers for Neural Automatic Post-Editing (WMT2020)

Language model 기반 사전학습 모델

- 같은 언어에 대한 denoising이 학습된 모델
- 기계가 번역한 결과물(MT)을 noise가 있는 데이터로 간주. Noise가 없는 원본 데이터(PE)로 복원

MT를 중심으로 PE를 생성 (SRC를 참고)

NMT model 기반 사전학습 모델

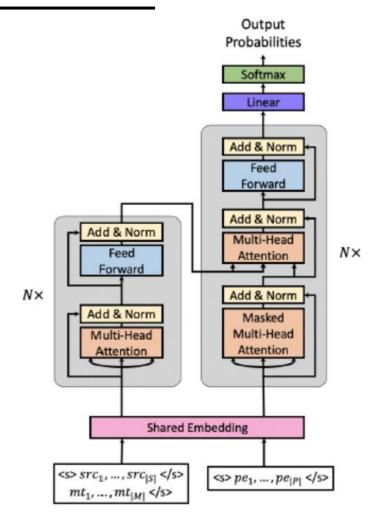
- 다른 언어에 대한 번역이 학습된 모델
- 다른 모델에서 번역한 결과물(MT)을 참고하여 SRC를 PE로 번역

SRC를 중심으로 PE를 생성 (MT를 참고)

LM based APE

1`

BERT-base모델을 encoder구조에만 활용 decoder는 random initialize

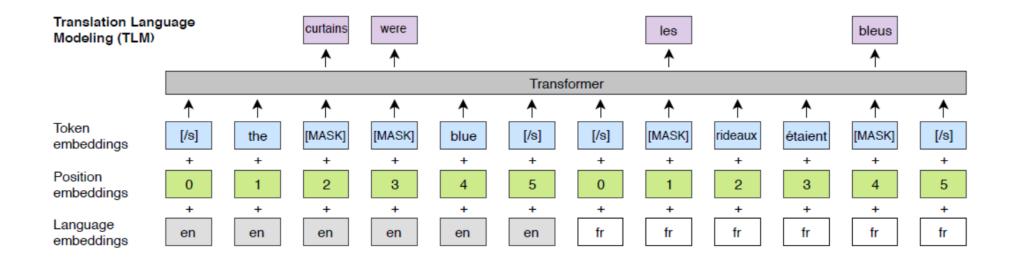


2

BERT-base모델을 encoder구조 뿐 아니라 decoder구조에도 활용

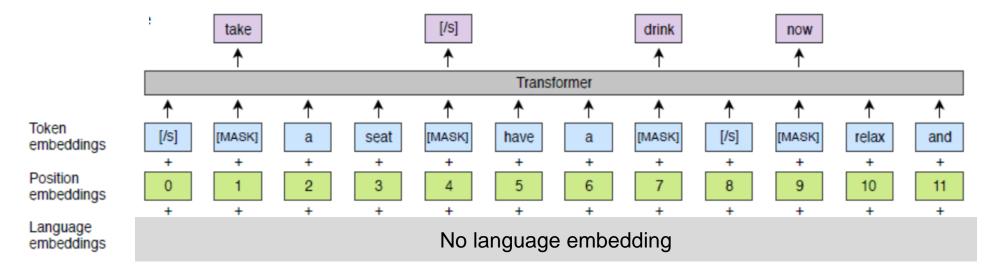
- 2019년 WMT에서는 mBERT를 encoder, decoder에 적용시킨 모델이 가장 우수한 성능
- 2020년 WMT에서는 decoder를 random initialize
- 현재까지 mBERT, XLM, XLM-R를 사전학습모델로 활용

XLM



- Parallel corpus를 통해서 모델을 사전학습하는 방법론 제시
- src와 tgt를 한 문장으로 연결하여 모델의 입력을 구성함
- MLM과 마찬가지로, 전체 문장의 일부를 [MASK] token으로 치환
- src의 [MASK]를 위해서 tgt의 정보를 이용 tgt의 [MASK]를 위해서 src의 정보를 이용

XLM-R

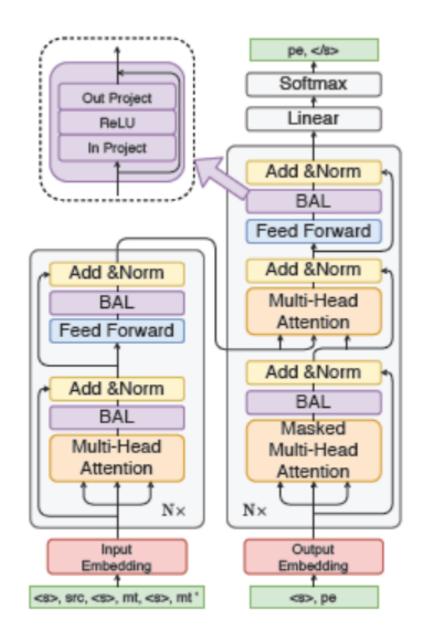


- 100개 언어의 mono corpus들로 MLM기반의 사전학습 진행
- RoBERTa 학습방법
- Common crawl 데이터로 학습
- Language embedding을 사용하지 않음

NMT based APE

HW-TSC's Participation at WMT 2020 Automatic Post Editing Shared Task (WMT2020)

- 사전학습된 transformer NMT모델에 APE를 fine tuning
- 전체 모델을 fine tuning하지 않고, BAL(bottleneck adapter layer)구조를 도입하여 해당 부분만을 tuning
- 데이터 증강기법을 적용하지 않고, 주어진 APE training data만으로 훈련 진행
- src와 mt를 한 문장으로 연결하는 것 이상으로,
 src와 pe를 통해 자체적으로 생성한 mt'을 추가적으로
 연결하여 입력을 구성



Data Augmentation of APE

- WMT2020에서 제공되는 APE훈련 데이터는 7,000개
- 성능 향상을 위하여 대부분의 논문에서 데이터 증강기법 채용

eSCAPE

병렬 코퍼스(src, tgt)를 통해 자체적인 번역 모델 개발. 번역 모델을 통해 src를 mt로 번역

pe를 tgt로 하여triplet(src, mt, pe) 구축

eSCAPE:a Large-scale Synthetic Corpus for Automatic Post-Editing

Denoise

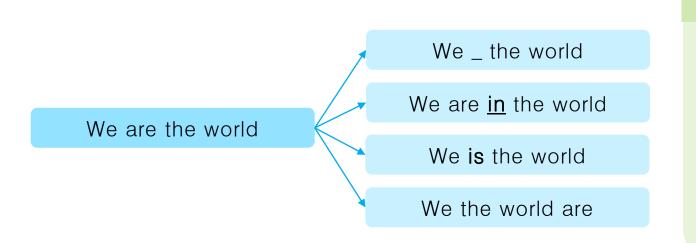
(src, tgt)로 구성된 병렬 코퍼스의 tgt에 noise를 추가하여 mt를 생성

pe를 tgt로 하여triplet(src, mt, pe) 구축

> Noising Scheme for Data Augmentation in Automatic Post-Editing

Data Augmentation of APE

- 충분한 데이터가 확보되지 않은 언어쌍의 경우, eSCAPE방법론 적용하기 어려움
- Parallel corpus가 NMT모델을 만들만큼 충분히 확보되지 않은 언어에서도 데이터 증강 가능



Denoise

(src, tgt)로 구성된 병렬 코퍼스의 tgt에 noise 추가.

Noising Scheme for Data Augmentation in Automatic Post-Editing

- QE: 번역된 문장의 품질을 예측하는 모델 (단어수준, 문장수준, 문단수준)

src

몇 년 전에 제 집 창문을 부수고 들어간 적이 있습니다.

mt

A few years ago, I entered the window of my house with a break **APE** model

A few years ago, I broke into my own house.

pe

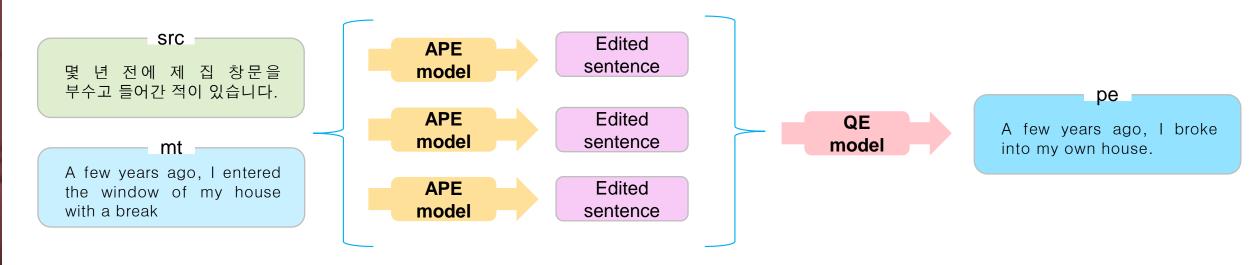
18

- QE: 번역된 문장의 품질을 예측하는 모델 (단어수준)
- mt의 token들 중, 교정이 필요한 부분을 [MASK]로 치환

Cross-Lingual Transformers for Neural Automatic Post-Editing (WMT2020)

- QE: 번역된 문장의 품질을 예측하는 모델 (문장수준)
- 여러 APE모델을 합친 ensemble 모델에서 최고 품질의 번역 문장을 선정하는 용도

Cross-Lingual Transformers for Neural Automatic Post-Editing (WMT2020)



Systems	TER↓	BLEU↑
Baseline (MT Output)	31.37	50.37
APE Transformer	29.52	52.70
APE Transformer + Sentence-QE	29.10	52.99
Word-QE + Sentence-QE	30.27	50.83
APE Transformer + Word-QE + Sentence-QE	28.83	52.80
+ Ensemble	28.47	53.82

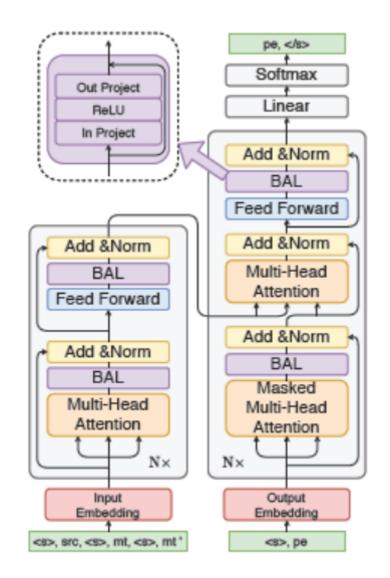
- QE를 적용한 Ensemble 모델을 통해 더 좋은 교정 성능을 기대할 수 있음
- 단, APE모델과 별개로 QE데이터를 통해 QE모델을 훈련해야 함

APE Summary

- 입력문장 구성방법: separate src, mt / combined src, mt
- 사전학습 모델: LM based / NMT based
- 데이터 증강: eSCAPE / denoise / No augmentation
- QE의 적용여부

APE SOTA

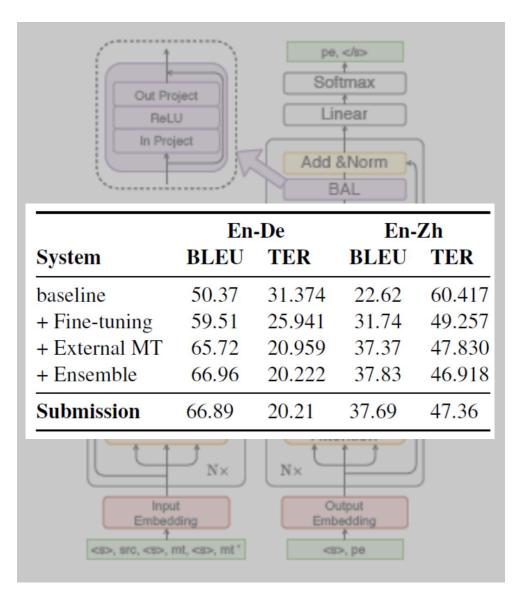
- 1. LM based모델이 아닌, NMT 모델을 사전학습모델로 활용함
- 2. Fine tuning시 BAL구조 도입
- 3. Data augmentation을 진행하지 않고, 주어진 훈련 데이터만으로 학습
- 4. 입력을 구성할 때, 자체적으로 생성한 mt'을 추가적으로 연결
 → 입력 문장은 〈s〉src 〈s〉mt 〈s〉mt'
- 5. QE모델을 활용한 ensemble모델



HW-TSC's Participation at WMT 2020 Automatic Post Editing Shared Task

APE SOTA

- 1. LM based모델이 아닌, NMT 모델을 사전학습모델로 활용함
- 2. Fine tuning시 BAL구조 도입
- 3. Data augmentation을 진행하지 않고, 주어진 훈련 데이터만으로 학습
- 4. 입력을 구성할 때, 자체적으로 생성한 mt'을 추가적으로 연결 → 입력 문장은 〈s〉 src 〈s〉 mt 〈s〉 mt'
- 5. QE모델을 활용한 ensemble모델

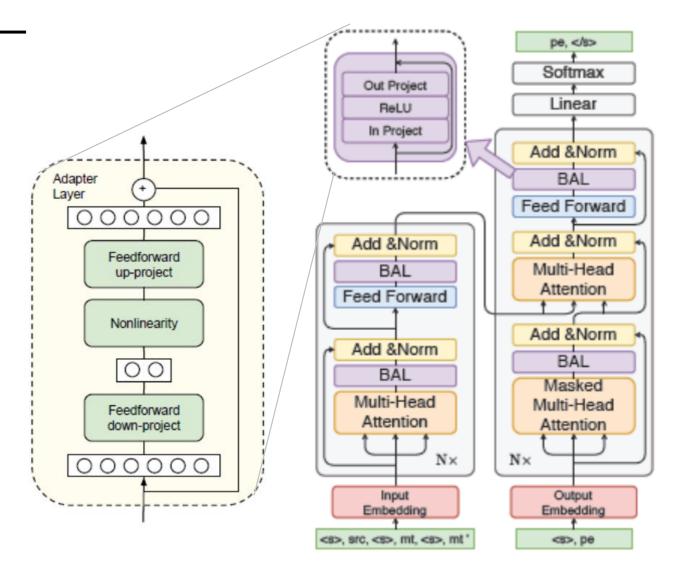


HW-TSC's Participation at WMT 2020 Automatic Post Editing Shared Task

APE SOTA

Bottleneck Adapter Layer

- Feed forward network와 같이
 Dense layer 2개와 activation function으로 구성됨
- Pretrained model은 학습 과정 중 freeze되고, finetuning학습은 BAL에서만 진행됨
- Adapter layer에 skip-connection구조를 도입
 → 만약 Adapter layer가 0에 가까운 값으로
 학습되는 경우, identity block과 같은 역할
- Bottleneck layer의 dimension은 hidden size의 2배로 설정



Parameter-Efficient Transfer Learning for NLP

https://arxiv.org/abs/1902.00751

앞으로의 연구방향

- 1. LM based모델이 아닌, NMT 모델을 사전학습모델로 활용함
- 2. Fine tuning시 BAL구조 도입

• En-De 데이터로 학습시킨 APE모델을 한국어로 전이학습

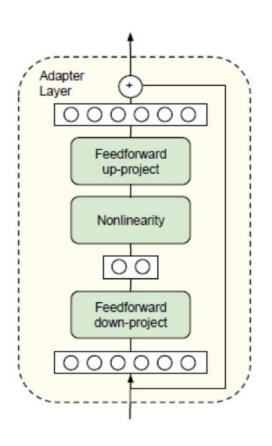
- 3. Data augmentation을 진행하지 않고, 주어진 훈련 데이터만으로 학습
- 4. 입력을 구성할 때, 자체적으로 생성한 mt'을 추가적으로 연결

• NMT 이후, 자체적으로 APE를 진행하는 모델

5. QE모델을 활용한 ensemble모델

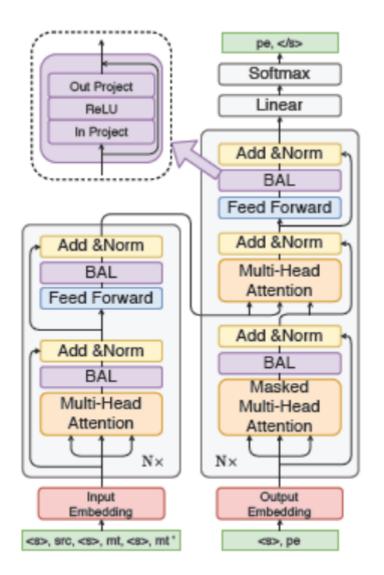
Model Transfer

- Bottleneck adapter layer(BAL)는 사전학습된 모델을 변경하지 않고, 일부 구조를 추가함으로써 쉽게 fine tuning할 수 있다는 장점이 있음
- BAL은 fine tuning 뿐 아니라, 다른 언어로의 전이학습에도 이용될 수 있음. 데이터가 풍부한 언어쌍을 통해 번역을 학습시켜 general NMT모델을 만들고, 저자원언어를 통해 BAL을 학습시켜 번역에서 높은 성과를 보임 (2019, Simple, Scalable Adaptation for Neural Machine Translation)
- APE에서 언어 전이학습은 아직 연구된 바가 없으며, 한국어 APE모델
 및 데이터셋도 공개된 바 없음



Self APE

- APE SoTA모델을 NMT모델로 해석
- 입력을 src, mt, mt'으로 구성했을 시, src와 mt를 입역으로 넣어 번역했을 때보다 더 좋은 번역성능을 얻음
- 번역모델에서 mt을 입력에 추가한다면 더 좋은 성능을 얻을 수 있을 것으로 예상



Self APE

- 번역모델이 생성한 mt를 다시 번역모델의 입력으로 구성하는 방법론 구상
- src만을 입력으로 받는 NMT모델이 수정하지 못했던 오류를 수정할 수 있을 것으로 기대함



감사합니다

Q&A