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1. Noisy Information can be contained

2. Shallow interactions captured between question & documents

3. Heavy resources and computation
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 First prompts a large language model to generate contextual documents based on a given question, and then read

s the generated documents to produce the final answer.

< Open-Domain QA >

“Generate a background 
document from Wikipedia 
to answer the given 
question. 
\ n\ n {query} \ n\ n”

< Fact checking >

“Generate a background 
document from Wikipedia 
to support or refute the 
statement. 
\ n\ n Statement: {claim} 
\ n\ n”

< Open-domain 
Dialogue System >

“Generate a background 
document from Wikipedia 
to answer the given 
question. 
\ n\ n {utterance} \ n\ n”

Refer to the passage below and answer the 
following question with just a few words. 
Passage: {background}
Question: {query} 
The answer is

{background}
claim: {claim} 
Is the claim true or false?

{background} 
utterance
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- Leverage a small reader model such as FiD

1.  Diverse Human Prompts

- Ask human annotators to provide different prompts

, to make the generated document diverse




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2. Clustering-Based Prompts

Step-1

: Ask a large language model to 

generate one contextual 

document for each question

GET ONE INITIAL DOCUMENT PER QUESTION
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2. Clustering-Based Prompts

Step-2

: Use LLM to encode each 

question-document pair 

⇒ 12,288-dimensional vector per 

document

: And Do K-means to cluster all 

embedding vectors

ENCODE EACH DOCUMENT, DO K-MEANS CLUSTERING
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2. Clustering-Based Prompts

Step-3

: Sample n question-document 

pairs from each cluster c 

⇒ Finally get K-generated 

documents

SAMPLE AND GENERATE K DOCUMENTS
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- FiD model performs the best among all 

baseline models

- GENREAD can outperform Google search on all 

benchmarks

- Clustering-based prompt method is effectively 

increasing the knowledge coverage
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- Increasing the number of documents can lead to better model performance and achieve 

state-of-the-art when using 100 documents 

- DPR retrieved documents with large language model (LLM) generated documents can 

achieve significantly better performance than using DPR retrieved documents only
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- Generated documents tends to have little diversity 

compared to retrieved documents

 Generated text tends to have lower coverage than 

retrieved documents



- GENREAD can achieve on par performance on the fact checking task a

nd superior performance on the dialogue system task


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1. Present a novel perspective for solving knowledge-intensive tasks 

2. Propose a novel clustering-based prompting method 

3. Conduct extensive experiments on three different knowledge-intensive tasks
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- Fine-tunes the language model (LM) on various downstream given the task instruction and input instance

 Leads to significant improvement in zero-shot task generalization

- LMs meta-trained through this standard approach are sensitive to different label words

 Fail to generalize to tasks that contain novel labels

=> “ FLIPPED LEARNING ”
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- Computes the conditional probability of the task instruction given an input instance and a label

- Allow the LM to put more focus on the task instruction

FLIPPED shows strong zero-shot generalization ability on unseen tasks 

because of the improved generalization capability to unseen labels
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<extra_id_0> Using only the above description 
and what you know about the world, is 

"<extra_id_1> " definitely correct? Yes or no? 
- Meta-training ignoring the correspondence between the input instance an

d label

 meta-trained LM generates task instruction regardless of the 

correspondence of the label option

- Unlikelihood loss term allows the LM to not generate the 

task instruction if the label option does not correspond to the 

input instance

 Strengthening the correspondence

input: The girl was found in Drummondville. 
Drummondville contains the girl. 

output: Yes
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- Utilize the subset of T0 (Sanh et al., 2021) meta-training datasets

- 4 task clusters (sentiment classification, paraphrase detection, topic classification, multi-choice QA), which are 20 datasets in tot

al

- Measure unseen task generalization performance on 

14 tasks of BIG-bench

- 14 English NLP unseen tasks, 

consisting of 7 classification and 7 multi-choice datasets

- 2 seen datasets during meta-training (IMDB, PAWS) and 3 unseen datasets (RTE, CB, WiC)
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- DIRECT outperforms T0-3B

- CHANNEL is not effective for task 

generalization

- FLIPPED outperforms baselines

- FLIP 3B > T0 11B
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- Direct show strong performance for seen

task

- FLIPPED shows strong performance on 

unseen task

Seen Unseen
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- Standard meta-training leads to 

label overfitting
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 Effectiveness of FLIPPED is not coming from unlikelihood training itself

on multi-choice tasks

 FLIPPED not only effective but also efficient zero-shot learners
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1. Propose FLIPPED LEARNING

2. 11B-sized FLIPPED outperforms not only meta-trained T0-11B, 

but also 16x larger 3-shot GPT-3 

3. FLIPPED is effective on generalization to labels that are unseen during meta-training
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- While LLMs have achieved SOTA results on many tasks, they generally fall short on MCQA

 MCQA ability of LLMs has been previously underestimated

- Cloze Prompting: 

1. Conflation of likelihood as answer and likelihood as natural language

2. Computational expense of scoring multiple candidate answers

3. No direct comparison between answers

4. Reliance on normalization procedures


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- Question and its symbol-enumerated 

candidate answers are all passed to 

LLM as a single prompt

- Symbols serve as a proxy for each 

answer’s probability
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- Humans’ answers to such questions are generally order-invariant

- Simply changing the order of the candidate answers changes the model’s answer

- N answer options => N! combination

- The proportion of orderings that chose the 

plurality answer among all orderings




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- Codex / InstructGPT / GPT-3

- Zero-shot / One-shot / Few-shot

- Not to maximize accuracy by extensive prompt engineering => Simple Prompt

- K is always chosen to be as high as possible while respecting Codex’s 4,000 token context limit

- Multiple choice prompts across a set of 20 diverse datasets

- Common Sense Reasoning / Natural Language Inference / Cloze and Completion / 

Text Classification / Winograd-style / Reading Comprehension
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- CP differs largely by normalization strategy

- MCP always performs best for Instruct and Codex


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- Without reliance on normalization and with 

4.3x less API calls than the chosen CP 

strategies 

- AG News, Winogrande, RiddleSense tend to 

have short, often one word answers

 CP is acting more like MCP

- Cosmos QA have somewhat irregular spacing

 No issue for MCPs, but serious issue for CPs
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- Caps: randomly uppercase or lowercase each character

- Space: randomly add a space before, after, or within each word




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1. LLM has enough ability for MCQA

2. Formally define multiple choice symbol binding (MCSB): 

Required ability for an LLM to benefit from MCP



3. Models most capable of MCSB can approach or beat SOTA 
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