AUTOMATIC CHAIN OF THOUGHT PROMPTING IN LARGE LANGUAGE MODELS

Zhuosheng Zhang¹*** Aston Zhang**²**, Mu Li**²**, Alex Smola**² ¹ Shanghai Jiao Tong University, ²Amazon Web Services

2023 LLM Paper seminar 2023 ICLR (POSTER)

• Chain-of-Thought (CoT) Prompting (Wei et al. 2022)

• CoT Prompting elicits LLMs to reasoning on complex reasoning task by decomposing multi-step problems into intermediate steps before giving answers.

Standard Prompting	Chain-of-Thought Prompting
Model Input	Model Input
Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?	Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?
A: The answer is 11.	A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. $5 + 6 = 11$. The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to	
make lunch and bought 6 more, how many apples do they have?	Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?
Model Output	Model Output
A: The answer is 27. 🗙	A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had $23 - 20 = 3$. They hought 6 more apples, so they have $2 + 6 = 0$. The
	bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

- Two major flavors in CoT Prompting
 - CoT prompting comes in two major flavors: <u>Zero-shot-CoT</u> (Kojima et al., 2022) and <u>Manual-CoT</u> (Wei et al. 2022)

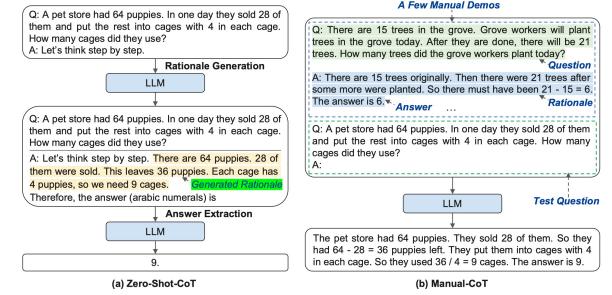


Figure 1: Zero-Shot-CoT (Kojima et al., 2022), using the '*Let's think step by step*' prompt, and Manual-CoT (Wei et al., 2022b), using human generated reasoning chains, with example inputs and outputs of an LLM.

- Superior performance from humans (Manual-CoT)
 - High-quality hand-crafted demonstrations 필요.
 - More problematic, different tasks such as arithmetic and Commonsense reasoning, require different ways of demonstrations to be manually generated.
 - ➔ Automatically constructing demonstrations with questions and reasoning chains (Zero-Shot-CoT) would address this problems

- Limitations of Zero-Shot-CoT
 - A naïve approach is insufficient.
 - Zero-Shot-CoT still makes mistakes in reasoning chains, even though retrieving semantically similar questions and generating reasoning chains.

• Auto-CoT - Main steps

- First, partition questions of a given dataset into a few clusters.
- Second, select a representative question from each cluster and generate its reasoning chain using Zero-Shot-CoT with simple heuristics.

k Auto Demos

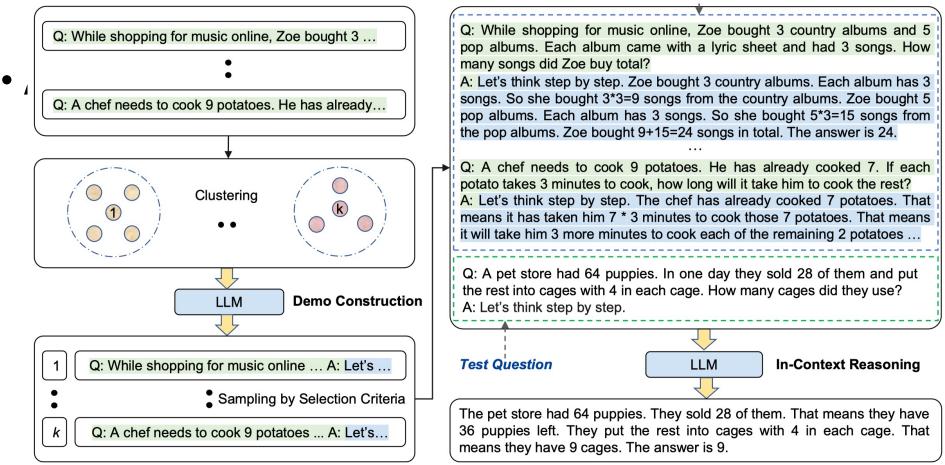


Figure 4: Auto-CoT. Different from Manual-CoT in Figure 1, a total of k demonstrations (on the right) are automatically constructed, using an LLM with the 'Let's think step by step' prompt.

- More challenging assumption
 - Only a set of test questions are given (w/o a training dataset)
 - \rightarrow utilize for retrieval

Random vs. Semantic Retrieval

Table 1: Accuracy (%) of different sampling methods. † indicates the use of training sets with *manually* annotated CoT. We report the mean and standard deviations for Random-Q-CoT and Retrieval-Q-CoT over three runs.

Method	MultiArith	GSM8K	AQuA
Zero-Shot-CoT Manual-CoT	78.7 91.7	40.7 46.9	33.5 35.8
Random-Q-CoT Retrieval-Q-CoT	$\begin{vmatrix} 87.1 \pm 1.8 \\ 82.4 \pm 0.5 \end{vmatrix}$	$\substack{ 47.3 \pm 0.5 \dagger \\ 48.4 \pm 0.6 \dagger}$	$36.4 \pm 2.2^{\dagger}$ $39.6 \pm 2.4^{\dagger}$

Random Retrieval > Semantic Retrieval?

• Why do Retrieval show lower performances?

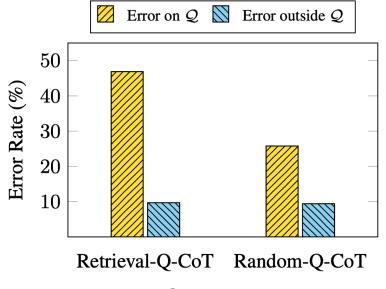


Figure 2: Error on Q and on its complement.

600 question from the MultiArith dataset

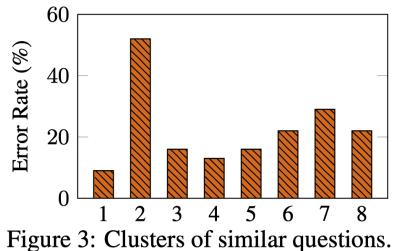
Q: 128 questions where Zero-Shot-CoT generates wrong answers

- → Almost same Error Rate outside Q for both, But larger Error Rate on Q for Retrieval-Q-CoT
- ➔ Retrieval tends to retrieve similarly hard questions that the model gets wrong

Table 2: Examples of Retrieval-Q-CoT and Random-Q-CoT for constructing demonstrations and prediction. The upper part contains the automatically constructed demonstrations, and the lower part contains test questions along with predicted reasoning chains.

Retrieval-Q-CoT	Random-Q-CoT
 Q: A chef needs to cook 9 potatoes. He has already cooked 7. If each potato takes 3 minutes to cook, how long will it take him to cook the rest? A: Let's think step by step. The chef has already cooked 7 potatoes. That means it has taken him 7 * 3 minutes to cook those 7 potatoes. That means it will take him 3 more minutes to cook each of the remaining 2 potatoes. That means it will take him a total of 7 * 3 + 2 * 3 = 21 minutes to cook all 9 potatoes. The answer is 21. X Q: A chef needs to cook 13 potatoes. He has already cooked 5. If each potato takes 6 minutes to cook, how long will it take him to cook the rest? A: Let's think step by step. The chef has already cooked 5 potatoes. That means it has taken him 30 minutes so far. There are 13 potatoes in total. 5 have been cooked so far. That means it will take the chef 48 minutes to cook the 8 remaining potatoes. In total, it will take the chef 78 minutes to cook all 13 potatoes. The answer is 78. X 	 Q: Wendy uploaded 79 pictures to Facebook. She put 44 pics into one album and put the rest into 5 different albums. How many pictures were in each album? A: Let's think step by step. Wendy uploaded 79 pictures to Facebook. She put 44 pictures into one album. That means she put the rest of the pictures, 79 - 44 = 35 pictures, into 5 different albums. That means each album had 35 / 5 = 7 pictures in it. The answer is 7. ✓ Q: At a restaurant each adult meal costs \$5 and kids eat free. If a group of 15 people came in and 8 were kids, how much would it cost for the group to eat? A: Let's think step by step. There are 8 kids, so that means there are 7 adults. Each adult meal costs \$5, so that means that the 7 adults will cost \$5*7=\$35. Now we just need to add the two numbers together. \$35+8=43\$. So it would cost \$43 for the group to eat. The answer is 43. X
Q: A chef needs to cook 15 potatoes. He has already cooked 8. If each potato takes 9 minutes to cook, how long will it take him to cook the rest? A: Let's think step by step. The chef has already cooked 8 potatoes. That means it has taken him 8 * 9 minutes to cook those 8 potatoes. That means it will take him 9 minutes to cook each of the remaining 7 potatoes. That means it will take him a total of $8 * 9 + 7 * 9 = 135$ minutes to cook all 15 potatoes. The answer is 135. X	Q: A chef needs to cook 15 potatoes. He has already cooked 8. If each potato takes 9 minutes to cook, how long will it take him to cook <u>the rest</u> ? A: Let's think step by step. The chef needs to cook 15 potatoes. He has already cooked 8. That means he has to cook 15-8=7 more potatoes. Each potato takes 9 minutes to cook. That means it will take him $9*7=63$ minutes to cook <u>the rest</u> of the potatoes. The answer is 63. \checkmark

- Errors frequently fall into the same cluster
 - Using k-means, partition all 600 test questions into k=8 clusters.
 - Observed that one of the clusters (Cluster 2) has an abnormally high error rate (52.3%)
 - The phenomenon could be generic as Zero-Shot -CoT may lack some skills to solve some commor problems in target tasks



→ Single cluster 가 아닌 multiple clusters에서 다양한 skills를 제공해보자

k Auto Demos

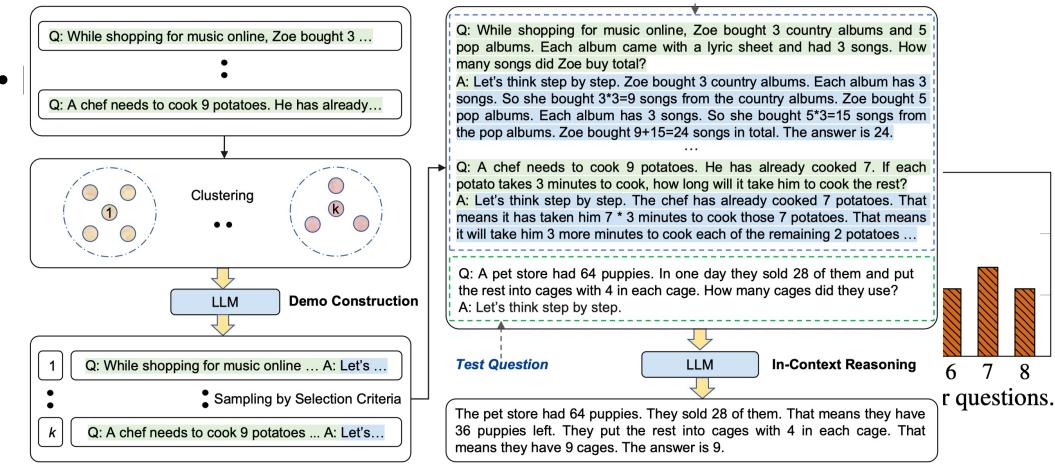


Figure 4: Auto-CoT. Different from Manual-CoT in Figure 1, a total of k demonstrations (on the right) are automatically constructed, using an LLM with the 'Let's think step by step' prompt.

Auto-CoT: Automatic Chain-of-Thought Prompting

Algorithm 1 Cluster

Require: Questions Q, number of chains k**Ensure:** Sorted questions $\mathbf{q}^i = [q_1^i, q_2^i, \ldots]$ for each cluster $i \in \{1 \dots k\}$ 1: procedure CLUSTER(Q, k)for each question q in Q do 2: 3: Encode q by Sentence-BERT Cluster all questions q into k clusters 4: 5: for each cluster $i \in \{1 \dots k\}$ do Sort questions $\mathbf{q}^i = [q_1^i, q_2^i, \ldots]$ 6: in the ascending order cluster centrality **return** all \mathbf{q}^i for $i \in \{1 \dots k\}$ 7:

Algorithm 2 Construct Demonstrations

```
Require: Sorted question lists q^i for all k clusters
Ensure: Demonstration list \mathbf{d} = [d^1, \dots, d^k]
 1: procedure CONSTRUCT(q^i, \ldots, q^k)
          \mathbf{d} \leftarrow \emptyset
 2:
          for each cluster i \in \{1 \dots k\} do
 3:
 4:
              for each question q \in \mathbf{q}^i do
 5:
                    (rationale r, answer a) via Zero-Shot-CoT(q)
 6:
                   if (q, r) satisfy selection heuristic then
 7:
                        \mathbf{d} \leftarrow \mathbf{d} \cup \{(q, r, a)\}
 8:
                        break
 9:
          return d
```


- Auto-CoT: Automatic Chain-of-Thought Prompting
 - Question clustering: Sentence-BERT 인코딩 기반 k-means clustering.
 각 cluster 내의 vector list는 cluster center와의 distance에 기반해서 내림차순 정렬
 → Sampling 시 중심에서 가까운 질의부터 우선적으로 고려
 - Demonstration sampling: 각 클러스터에서 질의 q에 대하여 Zero-Shot-CoT 수행. 생성된 rationale r, answer a의 길이(60 tokens, no more than 5 reasoning steps)를 초과하면 next question으로 넘어가는 방식으로 선택

- Tasks and Datasets
 - (i): Arithmetic reasoning (MultiArith, GSM8K, AddSub, AQUA-RAT, SingleEq, SVAMP)
 - (ii): Commonsense reasoning (CSQS, StrategyQA)
 - (III) Symbolic reasoning (Last Letter Concatenation, Coin Flip)

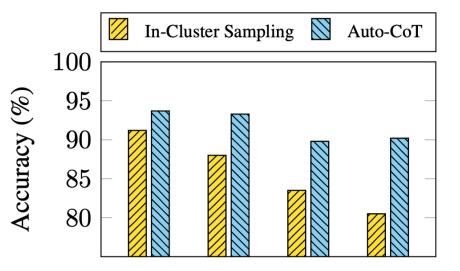
• Experimental results

10개 reasoning tasks에서 Manual-CoT 보다 좋음

Table 3: Accuracy on ten reasoning tasks. We report mean and standard deviations (\pm). Random-Q-CoT and Auto-CoT with three different random seeds. \uparrow and \uparrow indicate that Auto-CoT is significantly better than Random-Q-CoT at significance level p < 0.01 and p < 0.05 respectively.

Model			Arithn	netic			Comm	onsense	Sym	bolic
	MultiArith	n GSM8K	AddSub	AQuA	SingleEq	SVAMP	CSQA	Strategy	Letter	Coin
Zero-Shot Zero-Shot-CoT	22.7 78.7	12.5 40.7	77.0 74.7	22.4 33.5	78.7 78.7	58.8 63.7	72.6 64.6	54.3 54.8	0.2 57.6	53.8 91.4
Few-Shot Manual-CoT	33.8 91.7	15.6 46.9	83.3 81.3	24.8 35.8	82.7 86.6	65.7 68.9	79.5 73.5	65.9 65.4	0.2 59.0	57.2 97.2
Random-Q-CoT Auto-CoT					$81.5_{\pm 0.3}$ $87.0^{\uparrow}_{\pm 1.2}$					

- Effect of Wrong Demonstrations
 - Wrong demonstrations의 비율을 높여도 Demonstration의 diversity가 ICL의 효과성을 유지



12.5% 25.0% 37.5% 50.0% Percentage of wrong demonstrations

Figure 5: Effect of wrong demonstrations.

Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models

Lei Wang¹ Wanyu Xu² Yihuai Lan Zhiqiang Hu³ Yunshi Lan⁴ Roy Ka-Wei Lee³ Ee-Peng Lim^{1*} ¹Singapore Management University ²Southwest Jiaotong University ³Singapore University of Technology and Design ⁴East China Normal University

2023 LLM Paper seminar

2023 ACL

- Zero-Shot-CoT (Kojima et al., 2022)
 - Zero-Shot-CoT eliminates the need for manually crafted examples in prompts by appending "Let's think step by step" to the target problem fed to LLMs such as GPT-3.

- Three pitfalls of Zero-Shot-CoT (Kojima et al., 2022)
 - Results on a sample of 100 arithmetic test examples
 - Calculation errors (7%):
 wrong answer
 - Missing Step errors (12%):
 missed-out some intermediate steps
 - Semantic misunderstanding (27%):
 semantically misunderstand the problem

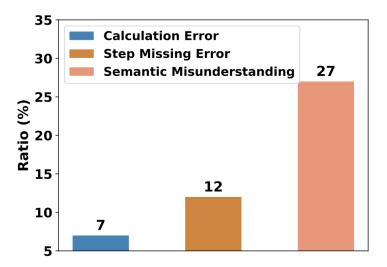


Figure 1: Error analysis of 46 GSM8K problems with incorrect answers returned by Zero-shot-CoT using GPT-3 LLM. Following Wei et al. (2022b) and Wang et al. (2022a), we assign "Calculation Error" (7%), "Step Missing Error" (12%), or "Semantic misunderstanding Error" (27%) to each incorrect answer.

Plan-and-Solve (PS) Prompting

- First, devising a plan to divide the entire task into smaller subtasks,
- and then carrying out the subtasks according to the plan.
- + Give more detailed description to solve a variety of problems. (PS+ prompting)

Plan-and-Solve (PS) Prompting

- Zero-Shot-PS+ > Zero-shot-CoT by a large margin
- Zero-shot-PS+ has a similar performance to an 8-shot CoT prompting in arithmetic reasoning (sometimes outperforms).
- A new CoT prompting approaches 개발에 대한 spark를 기대

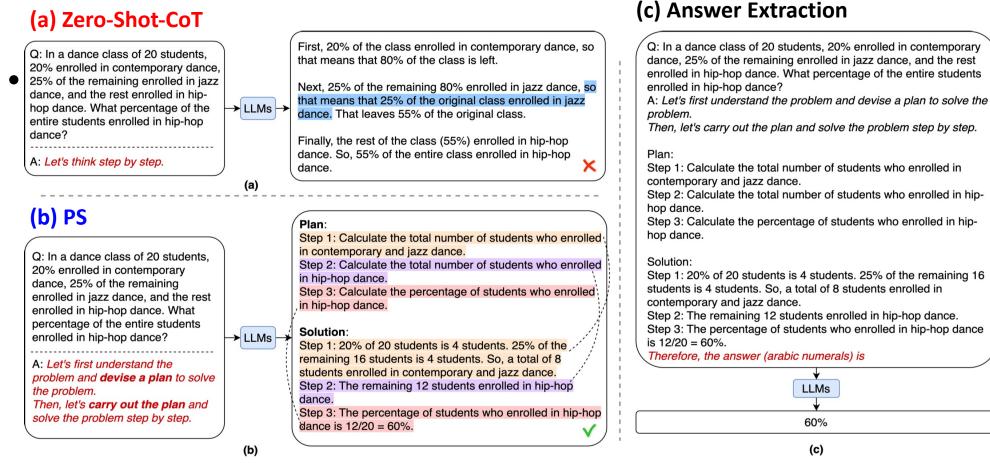


Figure 2: Example inputs and outputs of GPT-3 with (a) Zero-shot-CoT prompting, (b) Plan-and-Solve (PS) prompting, and (c) answer extraction prompting. While Zero-shot-CoT encourages LLMs to generate multi-step reasoning with "*Let's think step by step*", it may still generate wrong reasoning steps when the problem is complex. Unlike Zero-shot-CoT, PS prompting first asks LLMs to devise a plan to solve the problem by generating a step-by-step plan and carrying out the plan to find the answer.

Zero-Shot-PS Prompting

- Q: [X]. A: Let's first understand the problem and devise a plan to solve the problem. Then, let's carry out the plan and solve the problem step by step.
- [PS+] "pay attention to calculation":
 calculation error를 줄이기 위한 trigger sentence
- [PS+] "extract relevant variables and their corresponding numerals":
 the input problem statement에 explicit 정보를 놓치지 않도록
- [PS+] "calculate intermediate results":
 - relevant and important intermediate reasoning steps를 놓치지 않도록

Me

(a)

Q: Grace weighs 125 pounds. Alex weighs 2 pounds less than 4 times what Grace weighs. What are their combined weights in pounds?

A: Let's first understand the problem and **devise a plan** to solve the problem. Then, let's **carry out the plan** and solve the problem step by step. Large Language Models Plan: We can use algebra to solve this problem. We can set up an equation with the variable x representing Alex's weight and solve for x. Then, we can add the two weights together to get the combined weight.

Step 1: Set up an equation. We know that Alex weighs 2 pounds less than 4 times what Grace weighs. We can represent this as: Alex's weight = 4 * Grace's weight - 2

Step 2: Solve for x. We know that Grace's weight is 125 pounds. We can substitute this into the equation to solve for Alex's weight: Alex's weight = 4 * 125 - 2

Step 3: Calculate the combined weight. We can now add the two weights together to get the combined weight: Combined weight = 125 + (4 * 125 - 2)

Step 4: Answer. The combined weight of Grace and Alex is 497 pounds.

26/46

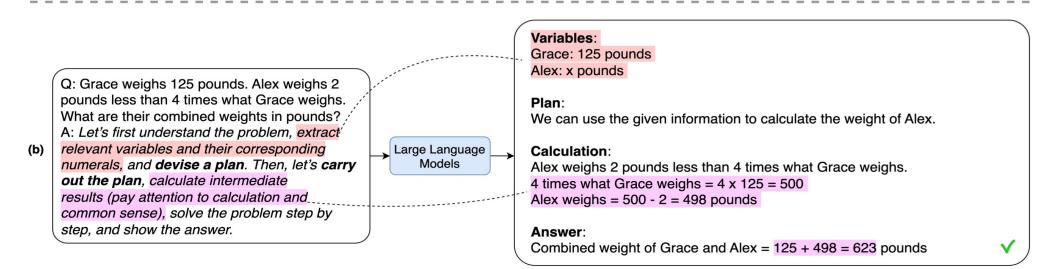


Figure 3: Example inputs and outputs of GPT-3 with (a) Plan-and-Solve (PS) Prompting and (b) Plan-and-Solve prompting with more detailed instructions (PS+ prompting). PS+ prompting greatly improves the quality of the generated reasoning process.

Benchmark Dataset

- Arithmetic Reasoning (GSM8K, SVAMP, MultiArith, Addsub, AQUA, SingleEq)
- Commonsense Reasoning (CSQS, StrategyQA)
- Symbolic Reasoning (Last Letter Concatenation, Coin Flip)

• Experimental results (Arithmetic Reasoning)

Table 2: Accuracy comparison on six math reasoning datasets. The best and second best results are boldfaced and underlined respectively.

Setting	Method (text-davinci-003)	MultiArith	GSM8K	AddSub	AQuA	SingleEq	SVAMP	Average
Zero-Shot	CoT	83.8	56.4	85.3	38.9	88.1	69.9	70.4
	PoT	92.2	57.0	85.1	<u>43.9</u>	<u>91.7</u>	70.8	<u>73.5</u>
	PS (ours)	87.2	<u>58.2</u>	<u>88.1</u>	42.5	89.2	<u>72.0</u>	72.9
	PS+ (ours)	<u>91.8</u>	59.3	92.2	46.0	94.7	75.7	76.7
Few-Shot	Manual-CoT	93.6	58.4	91.6	48.4	93.5	80.3	77.6
	Auto-CoT	95.5	57.1	90.8	41.7	92.1	78.1	75.9

- Experimental results (CS, Symbolic reasonings)
 - PS+ consistently outperforms Zero- Shot CoT
 - On symbolic reasoning, PS+ shows strong performances

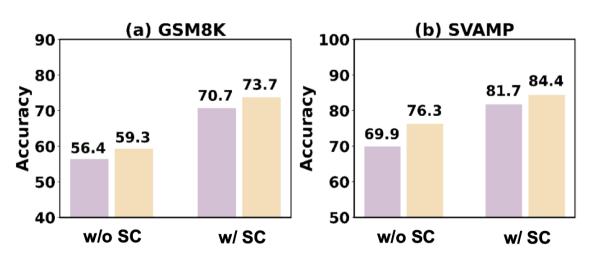
Table 3: Accuracy on commonsense reasoning datasets.

Method	CSQA	StrategyQA
Few-Shot-CoT (Manual)	78.3	71.2
Zero-shot-CoT Zero-shot-PS+ (ours)	65.2 71.9	63.8 65.4

Table 4: Accuracy on symbolic reasoning datasets.

Method	Last Letter	Coin Flip
Few-Shot-CoT (Manual)	70.6	100.0
Zero-shot-CoT Zero-shot-PS+ (ours)	64.8 75.2	96.8 99.6

Prompting with Self-Consistency



Zero-shot-Cot Zero-shot-PS+

> Self-Consistency (Wang et al., 2022): LLM's output의 randomness 완화를 위해, N reasoning results 생성하고 majority. Voting으로 final answer 결정하는 방법론 (2023 ICLR)

Figure 4: Results of methods with and without self-consistency (SC) on GSM8K and SVAMP.

Effect of Prompts

Table 5: Performance comparison of trigger sentences measured on GSM8K and SVAMP datasets with text-davinci-003 except for No. 2 (code-davinci-002). (*1) means the trigger sentence used in Zero-shot-CoT (Kojima et al., 2022). (*2) means the trigger sentence used in Zero-shot-PoT (Chen et al., 2022).

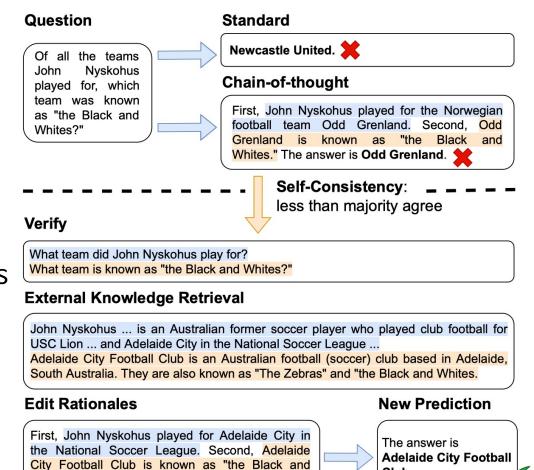
No.	Trigger Sentence	(GSM8K	SVAMP	
1	Let's think step by step. (*1	1) 5	56.4	69.9	\rightarrow Zero-Shot-CoT
2	<pre>import math import numpy as np # Question: example['question'] # Answer this question by implementing a solver() function. (*2 def solver(): # Let's write a Python program step by step, and then return the answer # Firstly, we need define the following variable:</pre>	2) 5	57.0	70.8	→ Zero-Shot-PoT
3	Extract variables and assign their corresponding numerals to these variables first and then solve the problem step by step.	5	50.5	69.5	\rightarrow PS
4	Firstly, <mark>extract variables</mark> and <mark>their corresponding numerals</mark> . Then, <mark>calculate intermediate variables</mark> . Finally, solve the problem step by step.	5	54.8	70.8	
5	Let's first understand the problem and devise a plan to solve the problem. Then, let's carry out the plan and solve the problem step by step.	5	58.2	72.0	\rightarrow PS+ triggers
6	Let's first understand the problem, extract relevant variables and their corresponding numerals, and make a plan. Then, let's carry out the plan, calculate intermediate variables (pay attention to correct numerical calculation and commonsense), solve the problem step by step, and show the answer.	5	59.3	75.7	→ PS+ 31/46

Verify-and-Edit: A Knowledge-Enhanced Chain-of-Thought Framework

Ruochen Zhao^{1*} Xingxuan Li^{1,2*†} Shafiq Joty^{1,3‡} Chengwei Qin¹ Lidong Bing² ¹ Nanyang Technological University, Singapore ² DAMO Academy, Alibaba Group ³ Salesforce AI {ruochen002, chengwei003}@e.ntu.edu.sg {xingxuan.li, 1.bing}@alibaba-inc.com srjoty@ntu.edu.sg 2023 LLM Paper seminar 2023 ACL

- CoT prompting in Knowledge-intensive tasks
 - CoT prompting improves complex reasoning capabilities of LLMs by generating interpretable reasoning chains, but still suffers from factuality concerns in knowledgeintensive tasks such as open-domain question-answering.
 - As a major use case of LLMs is the prospect of <u>replacing traditional search engines</u> and <u>usage for more direct information access through question answering</u>, factuality concerns could largely undermine their validity and degrade users' level of trust (Marcus, 2022).
 - As LLMs could fail to recall accurate details when functioning as a knowledge base (Ye and Durrett, 2022; Creswell et al., 2022)
 - → Human process? They often search (or revisit) external knowledge sources for supporting facts in order to refresh their memory.

- Verify-and-Edit Framework (VE)
 - VE Framework to post-edit the reasoning chains for more factually aligned predictions
 - 1. Find uncertain predictions
 - 2. Edit their rationales by searching for supporting facts
 - 3. Generate final answer based on edited rationales



Whites",

Figure 1: The Verify-and-Edit framework consists of five steps: (1) pass predictions with lower-than-average consistency to the next stages while leaving highly consistent predictions as-is; (2) produce verifying questions; (3) retrieve external knowledge; (4) edit rationales with informed answers; and (5) produce new predictions.

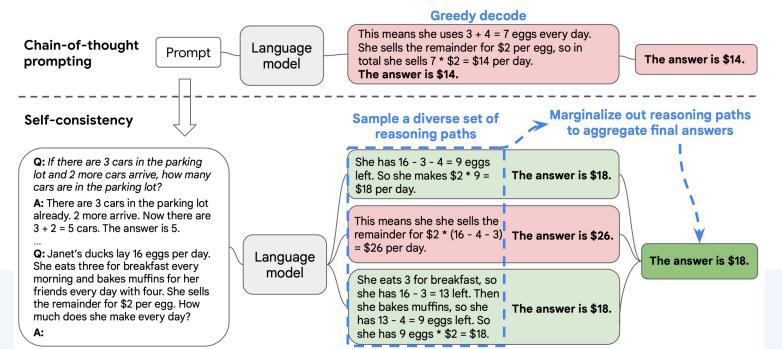
Club.

Verify-and-Edit Framework (VE)

- 3.8x improvement compared to retrieval-augmented models on AdvHotpot.
- On 2WikiMultiHop, VE reaches 33.6% accuracy with open-domain search, while CoT stands at 27.7%

Deciding when to edit

- <u>Self-Consistency</u> (Wang et al., 2022): A high correlation between self-consistency with accuracy → it could provide an uncertainty estimation for the model.
- A high consistency predictions are left as is. When consistency is lower than [n/2], label it as "uncertain"



- How to edit a specific rationale?
 - To verify the rationale, generate verifying question using the original question and the rationale.
 - Search for supporting facts in external knowledge sources (*e.g., Wikipedia, Google*) based on the verifying question.
 - Generate verifying answer for the verifying question based on the supporting facts.
 - Edit original rationale with the verifying answer.

Algorithm for Verify-and-Edit

Algorithm 1 Verify-and-Edit

Require: The original question q; An *n*-shot CoT prompt p_{cot} **Require:** An LLM $f(\cdot)$; LM number of completions n; LM decoding temperature τ **Require:** An external knowledge retrieval model $g(\cdot)$ **Require:** *n*-shot prompts for verifying question generation (p_{vq}) and answer generation (p_{va}) $R, A \leftarrow f(p_{cot}, q, n, \tau)$ \triangleright Generate a set of reasonings (R) and answers (A). $s_{sc}^* \leftarrow \max P(a|p_{cot},q), a \in A$ ▷ The highest self-consistency score among all answers. $r^*, a^* \leftarrow \arg \max P(a|p_{cot}, q), a \in A$ ▷ Reasoning and answer with highest self-consistency. if $s_{sc}^* < \left\lceil \frac{n}{2} \right\rceil$ then ▷ Edit reasoning with a less-than-majority-agree consistency. for $o_i \in r^*$ do \triangleright Edit each sentence in the reasoning. $u \leftarrow f(p_{vq}, q, o_i)$ ▷ Generate verifying question. $v \leftarrow q(u)$ ▷ Retrieve external knowledge. $w \leftarrow f(p_{va}, u, v)$ ▷ Generate verifying answer. $o_i \leftarrow w$ ▷ Edit original reasoning sentence with verifying answer. end for $a^* \leftarrow f(p_{cot}, q, r^*)$ ▷ Generate final answer with edited reasoning. return a^* else if $s_{sc}^* \geq \left\lceil \frac{n}{2} \right\rceil$ then ▷ Answer with high consistency is left as-is. return a^* end if

Benchmark datasets

- Adversarial HotpotQA: a multi-hop question answering dataset (the challenging subset proposed by Ye and Durrett (2022))
- 2WikiMultihop: a multi-hop question answering dataset exploiting the structured format in Wikidata
- Fever: a fact verification dataset

Baselines

- Standard Prediction (Standard): directly predict using LLM
- **CoT**: Predicting the label after generating the explanation
- **CoT with Self-Consistency** (CoT-SC): Sampling 5 CoT reasoning paths with a decoding temperature of 0.7
- **Calibrator** (Calib.): A calibrator that tunes the probabilities of a prediction based on the score of its prediction
- **ReAct**: A reason-and-act framework that utilizes an external Wikipedia API. It uses the PaLM model (Chowdhery et al., 2022), whose performance is similar to GPT-3.

- Knowledge retrieval systems
 - Wikipedia-API (Wiki): Searching for the query entities and selecting top sentences from their Wikipedia pages
 - **DrQA**: A pre-trained open-domain QA model that combines bigram hashing, TF-IDF matching, and a multi-layer recurrent networks (only utilize retriever from it)
 - **Google**: Using top-k search results produced by Google as assistive contexts
 - Dataset: Selecting from the set of paragraphs provided each dataset
 → Since this includes gold supporting context with distractor paragraphs, this is similar to an oracle setup <u>(upper bound of knowledge retrieval system)</u>

- Using Self-Consistency: know when it doesn't know
 - Low consistency → more uncertain by using Self-consistency → Right?
 - To test this, AdvHotpoQA dataset의 consistency distribution을 plotting
 - Incorrect samples → left-skewed (low consistency)
 - Correct samples → right-skewed (higher consistency)
 - This effectively validates the hypothesis

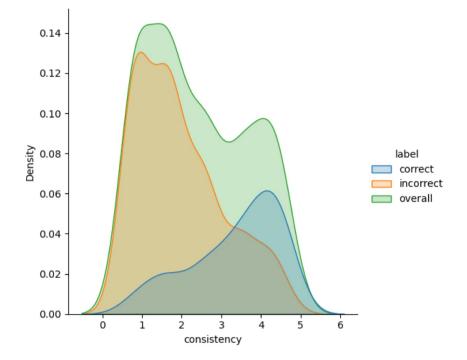


Figure 2: Kernal density estimation plots for consistency on the Adversarial **HotpotQA** dataset. With kernal estimation, the curve extends its true distribution's range, which is from 0 to 5 (as we sampled 5 paths).

Prompt Method^aHotpotQA
(EM)Standard28.7CoT (Wei et al., 2022)20.4CoT-SC (Wang et al., 2022a)33.4

• Experimental Results

- ReAct → CoT-SC: ReAct로 먼저 answer, 실패하면 CoT-SC
- CoT-SC → ReAct: all consistencies가 n/2보다 낮으면 ReAct로 answer

Method	knowledge	EM	$\Delta \mathbf{EM}$	AUC
$CoT-SC \rightarrow ReAct$	Wiki.	34.2%	+0.8%	-
$ReAct \rightarrow CoT-SC$	Wiki.	35.1%	<u>+1.7%</u>	-
Standard	-	23.1%	-	43.24
CoT	-	31.8%	-	38.30
CoT-SC	-	31.2%	-	34.97
CoT-SC + Calib.	Dataset	-	-	<u>49.00</u>
CoT-SC + VE	Wiki.	35.7%	+4.5%	45.62
CoT-SC + VE	DRQA	36.0%	+4.8%	46.06
CoT-SC + VE	Google	<u>37.7%</u>	<u>+6.5%</u>	47.98
CoT-SC + VE	Dataset	56.8%	+25.6%	60.94

Table 1: Results on the Adversarial **HotpotQA** dataset. The best result for each model is underlined and the best result overall is bolded. Δ EM represents the improvement on Exact Match from the CoT-SC baseline. The top two rows uses the PaLM model and the rest uses the GPT-3 davinci-003 model.

• Experimental Results

Method	knowledge	EM	$\Delta \mathbf{EM}$	AUC
Standard	-	16.9%	-	35.89
СоТ	-	28.4%	-	16.64
CoT-SC	-	27.7%	-	17.16
CoT-SC + Calib.	Dataset	-	-	24.13
CoT-SC + VE	Wiki.	33.1%	+5.4%	28.32
CoT-SC + VE	DRQA	31.1%	+3.4%	27.75
CoT-SC + VE	Google	33.6%	<u>+5.9%</u>	30.06
CoT-SC + VE	Dataset	37.2%	+9.5%	32.28

Table 2: Results on **2WikiMultiHopQA** dataset. ΔEM represents the improvement on Exact Match from the CoT-SC baseline. All experiment uses the GPT-3 davinci-003 model.

Prompt Method ^a	HotpotQA (EM)	Fever (Acc)
Standard	28.7	57.1
СоТ (Wei et al., 2022)	29.4	563
COT-SC (Wang et al., 2022a)	33.4	60.4
Act	25.7	58.9
ReAct	27.4	60.9
$CoT-SC \rightarrow ReAct$	34.2	64.6
$ReAct \rightarrow CoT-SC$	35.1	02.0

Method	knowledge	Accuracy \triangle	Accuracy
$CoT-SC \rightarrow ReAct$	Wiki.	- 2525	+4.2%
$ReAct \rightarrow CoT-SC$	Wiki.		+1.6%
Standard	-	46.8%	-
СоТ	-	50.0%	-
CoT-SC	-	52.0%	-
CoT-SC + Calib.	-	33.7%	
CoT-SC + VE	Wiki.	53.6%	+1.6%
CoT-SC + VE	DRQA	53.3%	+1.3%
CoT-SC + VE	Google	53.9%	+1.9%

Table 3: Results on **Fever** dataset. \triangle Accuracy represents the improvement on Accuracy from the CoT-SC baseline. The top two rows uses the PaLM model and the rest uses the GPT-3 davinci-003 model.

Conclusion

- 다양한 CoT 기반의 연구가 활발하게 진행되고 있고, 특히 Verify-and-Edit (2023 ACL)이나 ReAct (2023 ICLR), Selection-Inference (2023 ICLR) 같은 연구에서 CoT 에 Knowledge 를 결합하려는 시도가 보임
- Arithmetic이나 reasoning 같은 Task 혹은 HotpotQA나 WikiMultiHopQA 같은 Open-domain Multi-hop QA 에서만 연구가 진행됨
- 뭔가 접근해보기 쉬운 분야라고 생각이 들면서, 동시에 ChatGPT나 PaLM 처럼 추론 능력이 충분히 좋은 모델에 한정된 연구생각도 드는데, 흠..

Thank you!

