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Methods
Dataset

Dollar Street Dataset

Refrigerator
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Toilet Paper
CLIP scores
Quartile Income ViT-B | ViT-L | ViT-G
name range 32 14 14
poor 26.9-195.0 0.233 | 0.259 | 0.321

low-mid 195.4 - 685.0 0.250 | 0.282 | 0.350
up-mid 694.0-1,998.0 | 0.257 | 0.295 | 0.363
rich 2,001.0-19,671.0 | 0.256 | 0.295 | 0.363

Table 1: Average CLIP scores per income quartile for
different visual encoders.
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Experiments & Results
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Figure 3: CLIP Recall over all images: percentage of
true-positive or “recognized” images and false-negative
or “forgotten” images for each income quartile. Increas-
ingly more images are forgotten in the lower-income
bins, with 86.5% forgotten images in the poor quartile.
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Figure 10: Topics where recall for lowest income level is higher than recall for other income levels.
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Disparate recall across countries
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Figure 5: Countries with high and low recall scores:
7/10 countries with the worst recall have low average
incomes and are from Africa. The countries with the
best recall scores have high average incomes and are
from America, Europe, Asia. Countries with low recall
also have low income, while most countries (apart from
Guatemala) with high recall have a high income.
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Conclusion

Lessons Learned and Actionable Steps

1. Invest effort to understand the extent of the digital divide in vision-language performance
2. Define evaluation metrics that represent everyone

3. Document training data

4. Invest in geo-diverse datasets

5. Annotate diversity and subjectivity in datasets
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Background

Open Domain QA
- Retrieve-then-Read Framework
= Retrieving from reliable sources, enjoys the benefits of being factual

= =Ml...? They suffer from incomplete knowledge coverage and contain irrelevant information

- Generate-then-Read

0o

= dd=l passage= questionit I 2FEAE0] =
= 20....? They frequently contain factual errors due to hallucinations
“how to combine retrieved and parametric knowledge

to get the best of both worlds for open-domain QA”
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Background

Original question | DPR-FiD predictions | GENREAD predictions

Q: Who played lionel in as time goes by? | Geoffrey Dyson Palmer | Geoffrey Palmer
Explanation: The labeled answer 1s “Geoffrey Dyson Palmer™, however, “Geofifrey Palmer™ 1s also correct.
DPR retrieved documents: Geoffrey Dyson Palmer, (born 4 June 1927) 1s an English actor known for

his roles in British television sitcoms playing Jimmy Anderson in “The Fall and Rise of Reginald Perrin®,

Ben Parkinson in “Butterflies™ and Lionel Hardcastle in “As Time Goes By". His film appearances include
“A Fish Called Wanda”, “The Madness of King George™, “Mrs. Brown™, and “Tomorrow Never Dies™.
GPT generated documents: As Time Goes By is a British sitcom that aired on BBC One from 1992 to
2005. The show starred Geoffrey Palmer and Judi Dench as Lionel and Jean Pargetter, a middle-aged couple

who reunite after many years apart. Lionel was played by Palmer, who was also a writer on the show.
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Compatibility-Oriented knowledge Merging for Better Open-domain (COMBO)
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NaturalQuestions (Single-hop QA)

Question: Who plays Charlotte in “The Strain” season 47
Correct Answer: Rhona Mitra V

Prediction: Alexandra Breckenridge x

t NS 2B
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Retrieved Passage

(Rhona Mitra) ... she played Charlotte in the fourth season of
“The Strain” TV Series ...
=> Zt T3 T} Bi2tst Passage pair0il CHol

Compatibility scorer 2E&

1%
[

LLM-generated Passage

The Strain is an American horror drama television series

Charlotte ... is played by Alexandra Breckenridge in season 4
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Compatibility-Oriented knowledge Merging for Better Open-domain (COMBO)
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COMBO
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™

( Retrieved Passage 2
(Italy national football team) _.. Italy is one of the most successful national
ktea ms in the history of the World Cup, having won four titles (1934,

- I Targe’r RPE Helst 2= RPE Egt Retrieved Passage 3 )
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Mining Silver Labels
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Comparison with Baselines
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i HQA HQA
Methods NQ TQA WebQ| 17 pridae
test  test test
dev dev

Single Knowledge Source
Retrieved Psg. Only |[46.7 61.9 48.1 | 599 554
LLM Psg. Only 40.3 67.8 51.5 |42.6 359

Two Knowledge Sources

Direct Merging 527 742 51.1 |6l.6 578
Random Matching |53.3 74.2 51.6 |61.5 57.7
COMBO (ours) 54.2 74.6 530 | 61.6 580

Table 1: Exact Match (EM) results on NaturalQues-
tions (Kwiatkowski et al., 2019), TriviaQA (Joshi et al.,
2017), WebQuestion (Berant et al., 2013), and Hot-
potQA (Yang et al., 2018). For experiments under Two
Knowledge Sources, we conduct three runs with differ-
ent random seeds and report the average.
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Ablation Study

N TQA
Method Q Q
dev dev Q  LIMPsS
Q Retrieved Psg 3 .
COMBO (ours) 523 739 Q  LIMPsgS Retrieved Psg 3 o B IR S o
) g .
w/o evidentiality discriminator 51.8  73.5 O SN PeriewedPEd  5n W) 1) Remeearsgs D 4] SN RetiewdPsgd g (f
w/lo pairwise input 515 T34 o S Reieved Pog 5 : : Q  RetricvedPsg s LLMPagd
w/o sorting pairs 5.7 737 Q  LIMPsg4
wlo fixed (Ip,,rp,) order 50.8 733 Q  Retrieved Psg 5
w/o evidentiality-cutoff 51.7 73.6 COMEBO (ours) w/o pairwise input w/o fixed (Ip;, rp;) order
w/o optimal matching 5.6 73.6

Figure 4: [llustrations of the input formats for two of the ablation experiments in Table 2.

Table 2: Ablation study results on NaturalQuestions
(NQ) and TriviaQA (TQA).
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Open-domain QA

Impact of Conflicting Contexts on the Reader Model

- LLM1t Retrieval AIOIQ] Z=01 /= [, ReaderJt S Z0HLI & ZOH2 £ A=INH?

- ich Conflicting Retrieved Direct
Conflicting rate Rate ~ SUPS% b Only Merging COMBO
i | | 0-0.1 562% 416 477 48.5(+0.8)
conflictine rate — Na-(M — My) 0.1-02 227% 451 531 53.3(+0.2)
contlicing rate = N M : 02-03 155% 525 590 59.9(+0.9)

0.3-04 1.8% 62.5 65.0 67.5(+235)
0.4-05 2.2% 57.4 64.0  66.0 (+2.0)

- 05-10 16% 618 566 610 (+4.4)
Nj: # of Gold answerZ& Zgfst retrieved Passage

Table 3: The performance of our method compared to

M-M,: # of gO|d answer= E&6HX %22 LLM Passage others on NaturalQuestions dev set w.r.t. conflicting rate
(percentage of conflicting passage pairs, Equation 3).
=> Conflict rateO] =0Ix, Direct MergingEEf olatL| Larger improvements of COMBO over Direct Merging

are shaded with darker orange. Overall, COMBO’s
improvement over Direct Merging is greater when the
conflicting rate is higher, suggesting the robustness of
our method to knowledge conflicts.

ds &80l 2=
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Experiments

Open-domain QA

Case Study
[ Question: what NFL coach has the most wins ever? . Answer: Don Shula ] Predictions: Direct Merging =+ George Halas = ; COMBO < Don Shula v ]
rLI.M-generated Passage 3 -\| ( Retrieved Passage 7 N
The NFL coach with the most wins ever is Don Shula, who coached the Miami (Don Shula) ... He currently holds the NFL record for most career wins as a head
Dolphins from 1970 to 1995 . kc{:ach, with 347 _
Lt -

E’LL!m"I-gﬁ_-n1=.-ra’l:||=.-cl Passage 10 Y [ Retrieved Passage 1 h

In the Mational Football League {NFL), the head coach with the most regular season  ®—# [Guy Chamberlin) ... He compiled a 58-16-7 record in six years as a head coach in the
‘:'.Iins is George Halas, who compiled 318 victories in 40 seasons with the _. J | National Football League (NFL), the best win percentage of any coach in NFL history - J

T,

Figure 6: An example of a QA pair and the passage matching results by COMBO. Passage pairs are sorted by
their compatibility scores. It shows how COMBO rectifies the prediction of the baseline method under knowledge
conflicts by prioritizing compatible pairs (green connecting line) over incompatible pairs (red connecting line).

- LLM-generated passage= hallucination@= George HalasE EHCO=Z Hd

2t ANIZS=M =Ht

I

- COMBOY9| &L Direct MergingUlAl EXE EEZ, compatible pairg &=2 HEo=

wet
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Experiments

Open-domain QA

Human Evaluation

. .« . T 40
- DiscriminatorJt passagell compatibilityS =
o Compatible
reader0ilHl E&Z36| M=ot IUA=It _ 30
2
. . 25
<=> Silver Labeling0l Z&&2IJt = -
% Conflicting - -20
- compatible pairdt &XM=Z compatibleStXl, 2 15
_._ - -10
evidential pairZ EEE pairdt & 2HE Zeotd Non-evidential-
-5

A=XIE human annotating

Compatible Conflicting Non-evidential
Annotated Label

Figure 7: Confusion matrix of the human annotations vs.
predicted labels by our discriminators on 150 random
samples from NaturalQuestions dev set. The overall
accuracy is 78%.
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Conclusion

Conclusion

- Retrieved passage= Ol& EXIl, LLM-generated passage= 0I21 22Xt LI

: Knowledge conflict & Compatibility
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- Appendix
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