LLM Interpretability 2

여름세미나

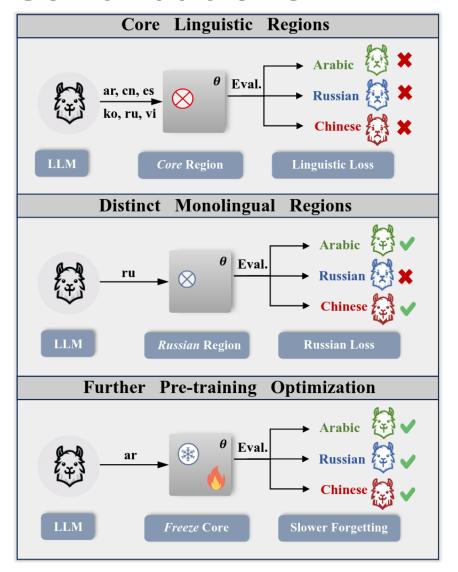
김동준

Unveiling Linguistic Regions in Large Language Models

Zhihao Zhang^{1*}, Jun Zhao^{1*}, Qi Zhang^{13†}, Tao Gui², Xuanjing Huang¹

- ¹ School of Computer Science, Fudan University
- ² Institute of Modern Languages and Linguistics, Fudan University
- ³ Shanghai Collaborative Innovation Center of Intelligent Visual Computing {zhangzhihao19, zhaoj19, qz, tgui, xjhuang}@fudan.edu.cn
- 2024 ACL Accept
- LLM의 다양한 언어들의 능력은 전부 같은 곳에 저장되어 있을까? => 공통된 언어 능력을 손상시키면 모든 언어능력이 떨어질까?
- 각 언어들의 능력은 서로 다른 곳에 저장되어 있을까? => 특정 언어의 고유한 지식을 손상시키면 특정 언어 능력이 떨어질까?
- 30개의 언어로 실험

Contributions



• 모든 언어에 공통된 Core Region 제거 => 모든 언어의 성능 저하

• 특정 언어의 Region 제거 => 특정 언어의 성능 저하

• Core Region 얼리고 pre-training 시도 => Catastrophic Forgetting 방지

Experimental Setup

- LLaMA-2-7B/13B에 대해 Language Further Pre-Training 진행
- 30개 언어 대상
- Perplexity를 메트릭으로 사용
- 데이터 셋은 Zhihu, Wecha, Axiv, Falcon, 여러 책들로 구성
- 이 데이터셋을 이용해서 각 언어 모델을 training 시키고 training 단계에서 언어 능력을 지닌 파라미터를 찾음

Importance Score

- 언어를 지니고 있는 파라미터는 Importance Score를 이용하여 찾음 $\mathcal{I}_{j}(\theta) = |\mathcal{L}(\mathcal{D},\theta) \mathcal{L}(\mathcal{D},\theta|\theta_{j}=0)|$
- Importance Score:
- 특정 파라미터의 loss 그 파라미터를 0으로 만들었을 때의 loss
- 모든 파라미터마다 반복해야함... 현실적으로 불가능함
- Loss에 대한 Taylor Expansic $\mathcal{I}_j(\theta) \approx |g_j \overline{\theta_j}|$ 사용하면 Importance Score를 쉽게 예측할 수 있는.
- g 는 backpropagation에서의 gradient 임



Experiment 1: Core Region

- 모든 언어의 공통된 Core Region 찾은
 - 전체 파라미터의 1%로 굉장히 작은 부분

- Top 3% 파라미터를 0으로 만듬
 - => PPL이 엄청나게 증가
 - => 모든 언어에서 완전한 언어능력 손실

Languages		LLaMA-2 3% Removal				
Lunguages	Base	Тор	Bottom	Random		
Arabic	6.771	127208.250	6.772	7.895		
	6.261	102254.758	6.316	7.112		
Chinese	8.652	295355.5	8.565	9.837		
Cilliese	7.838	84086.906	7.806	8.619		
Italian	14.859	58908.879	14.860	17.341		
	13.694	47375.844	13.730	15.207		
Japanese	10.888	322031.406	10.896	12.535		
	10.072	75236.031	10.137	11.661		
Korean	4.965	125345.359	4.967	5.649		
	4.724	90768.844	4.743	5.241		
Persian	6.509	81959.719	6.511	7.628		
	6.205	92201.812	6.229	7.009		
Portuguese	15.318	47763.059	15.319	17.297		
	13.667	51498.402	13.982	15.376		
Russian	12.062	170776.750	12.064	13.728		
	11.048	112574.609	10.948	11.757		
Spanish	17.079	51940.859	17.082	18.98		
	16.351	54005.891	16.138	17.292		
I II-u-i-i-i-s	9.409	120719.938	9.409	10.875		
Ukrainian	8.295	116287.305	8.297	9.076		
Viotnomoss	5.824	40126.527	5.824	6.614		
Vietnamese	5.471	42336.426	5.437	5.995		

Experiment 1: Core Region

- Top 1% 파라미터 손상 후 추가로 훈련 시킨다면?
- 언어 능력을 잃은 후 다시 복구 할 수 있을까?
- Top & Freeze: 새로운 파라미터에서 다시 처음부터 언어 능력을

습득함

(영어는 다시 습득하지

못함)

• Top & Unfreeze: 이전과 같은 파라미터에서 다시 언어 능력을 습득함

Testing	# Training	Removal Ratio = 1%			
Dataset (Language)	Samples (Chinese)	Top & Freeze	Bottom & Freeze	Top & Unfreeze	
Wechat (Chinese)	0 K	254772480	6.452	254772480	
	2K	674.076	6.052	6.05	
	5K	292.499	6.053	6.058	
	10K	116.859	6.305	6.303	
	20K	20.722	6.556	6.559	
	50K	9.129	6.18	6.175	
	200K	6.246	5.581	5.604	
Falcon (English)	0K	4244070	14.02	4244070	
	2K	158431.282	14.507	14.445	
	5K	343498	15.732	15.415	
	10 K	175567.219	15.878	15.875	
	20K	32505.828	18.689	18.952	
	50K	12455.038	29.029	31.583	
	200K	5301.527	488.429	448.804	

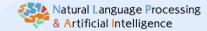
Experiment 2: Monolingual Region

Hypothesis 1

• 각 언어마다 Core Region과는 다른 특정 언어의 능력이 저장되어있는 고유한 부분이 있을 것이다

Hypothesis 2

• 특정 언어의 고유 부분을 손상시키면, 다른 언어의 능력은 유지되면서 특정 언어의 능력만 떨어질 것이다



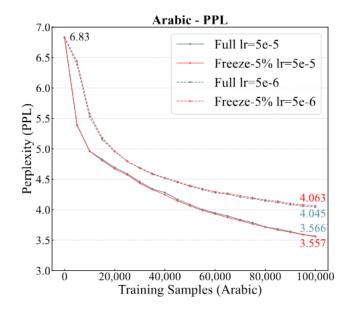
Experiment 2: Monolingual Region

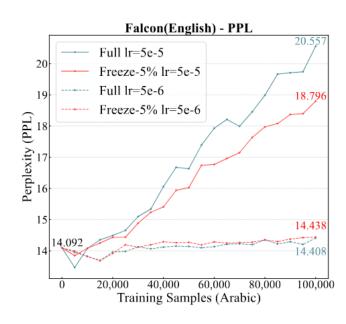
• 러시아어를 담당하는 파라미터를 앞의 importance score를 이용하여 찾음

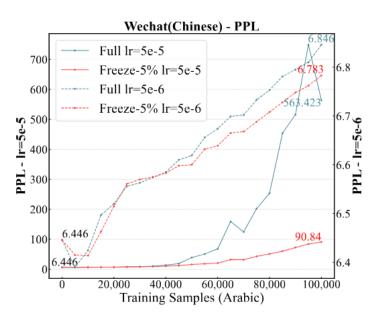
Languages		Russian (10K)		Russian (100K)	
Zunguuges	Base	Тор	Bottom	Тор	Bottom
Arabic	6.771	7.105	6.785	7.071	6.787
Chinese	8.562	8.927	8.593	8.878	8.599
Italian	14.859	16.155	14.931	16.274	14.935
Japanese	10.888	11.212	10.931	11.119	10.951
Korean	4.965	5.19	4.972	5.149	4.974
Persian	6.509	6.93	6.506	6.894	6.515
Portuguese	15.318	16.51	15.247	16.421	15.247
Russian	12.062	28.93	12.141	41.381	12.137
Spanish	17.079	18.07	17.224	17.894	17.211
Ukrainian	9.409	18.147	9.43	22.622	9.435
Vietnamese	5.824	6.086	5.872	6.079	5.873

Experiment 3: Freezing & Pre-Training

- Core Region은 얼리고 pre training => CF 완화
- Top 5%, Ir 5e-5 / 5e-6







Anthropocentric bias and the possibility of artificial cognition

Raphaël Millière * 1 Charles Rathkopf * 2

- 2024 ICML Poster 2024.07.04 한달된 논문
- 실험 없음... 과학보다는 철학적 느낌이 강함
- 실험 심리학에 기반, 많은 reference
- What cognitive competencies(능력) do LLMs have, if any?

LLM Cognition 연구의 두가지 Bias

- LLM의 Cognitive Competency를 어떻게 측정하지? 를 답해줄만한 방법론이나 프레임워크 부재
 - 실험 심리학적 접근이 가장 비슷함
 - 기존 interpretability 연구에서도 심리 심리학적 접근이 많이 사용됨
 - 하지만 원래 심리학은 사람을 대상으로 한 연구; LLM은 사람과 전혀 다름
- 실험 심리학의 방법론을 LLM에게 적용시키는 것은 Anthropomorphic / Anthropocentric Bias에 빠질 위험이 있음
- Anthropomorphic Bias: Justification 없이 LLM의 구조/능력을 사람의 구조/능력과 매칭시키려는 경향
 - e.g. LLM이 감정/창의력을 가지고 있다; 뉴런; One-to-One Brain Mapping
 - 확실한 Justification을 전제로 연구를 해야함
- Anthropocentric Bias: LLM을 사람의 기준에 맞게 평가하려는 경향
 - 조금 더 복잡함

Anthropocentrism의 두가지 종류

• Type 1: 모델의 performance가 낮은 것은 competence가 낮기 때문이다

- Type 2: 모델의 문제 해결 방법이 사람의 방법과 다르기 때문에 정답을 맞추었다 하더라도 모델은 제대로 이해를 하지 못하고 있을 것
- Performance: 모델의 관찰 가능한 지식/능력 (답변)
- Competence: 모델이 내부적으로 지니고 있는 지식/능력

Type 1 Anthropocentric Bias

"모델의 Performance가 낮은 이유는 Competence가 낮기 때문이다"

- Bias인 이유: 외부적인 요인들이 있을 가능성
 - e.g. Nervous Student in an Exam
 - 이런 외부 요인들을 간과해서는 절대 안됨

Type 1 Anthropocentric Bias

- Nervousness와 같은 외부 요인들을 LLM에 적용시키는 것은 Anthropomorphic Bias아닌가?
- LLM에도 특수한 외부 요인들이 있음 연구의 기본 전제가 틀린 경우들
 - e.g. Forest Fire Example
- 일반적으로 간과하는 요인들이 Performance를 낮추는 경우가 많음
 - e.g. F1 Racing Example
- Task Demand / Computational Limitations 으로 나뉨

Type 1 - Task Demands

• 일반적으로 문법에 대한 지식을 평가할 때:

"Here are two English sentences: 1) Every child has studied. 2) Every child have studied. Which sentence is a better English sentence? Respond with either 1 or 2 as your answer."

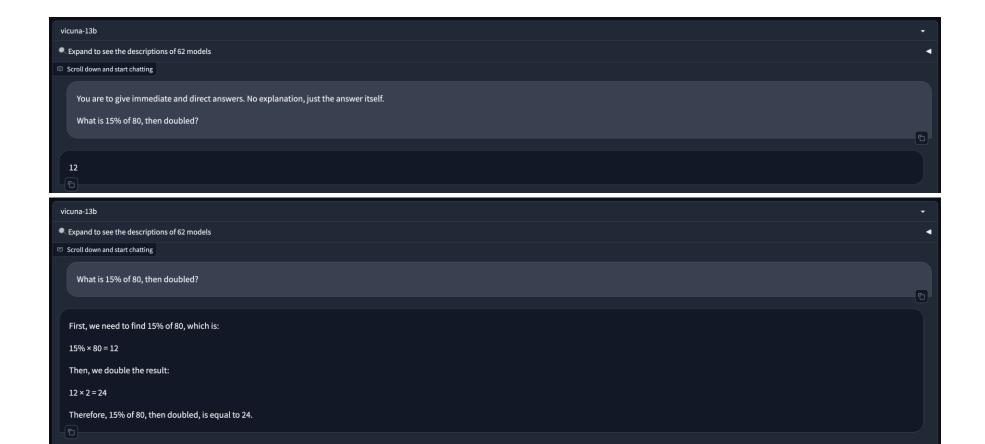
• Bias 없이 평가:

"every child has studied" "every child have studied"

- 두개의 input을 주고 log probability를 직접 확인
- 두개의 방법을 비교해본 결과 밑의 예측 결과가 더 좋았음
- 일반적으로 사람에게 말하는 것과 같이 프롬프트를 주는 것 자체가 LLM을 사람 취급하는 것이고 그것이 바로 Anthropocentrism이 아닐까?

Type 1 – Input Dependent Computational Limitations

- Transformer 모델은 답변 전에 생성하는 토큰에 영향을 많이 받음
 - e.g. COT, Let's Think Dot by Dot: Hidden Computation in Transformer Language Models



Type 1 – Input Dependent Computational Limitations

• 앞에서 나온 예시들은 전부 이미 모델이 "알고 있는" 지식을 어떻게 답변하게 하는가? 를 답하는 방법들임

- 이는 즉, Performance는 좋지 않더라도, Competency는 갖고 있다 라는 뜻
- COT, ... 예시에서의 "답변 이전의 토큰 갯수"가 performance의 bottleneck인가?

Type 2 Anthropocentric Bias

"모델이 사람과 다른 사고 과정을 거쳐 답변을 하였으니 Competency가 낮다"

• Bias인 이유: LLM이 어떻게 학습을 하는지 사람이 control 할 수 없음 이미 학습된 blackbox 모델을 이해하려 노력 할 뿐

Type 2에 대한 반박

"언어적 사고를 하는 유일한 생명체인 인간이 만들어낸 데이터로 학습된 모델은 당연히 인간과 유사한 사고방식을 가지고 있어야 하는 것이 아닌가?"

해명:

- 당연하게도 우리는 인간이기에 인간의 사고 방식과 비교를 하는 것은 어쩔 수 없다
- 하지만 인간의 인지능력을 "벤치마크"로 보는 것이 맞는 방향일까?
- 철학자 Ali Boyle
 => "인간의 인지능력이 initial search template은 맞지만 competency의 조건은 아니다"

Thank you